Download presentation
Presentation is loading. Please wait.
Published byMaude Wade Modified over 8 years ago
1
1 Nuclear Medicine SPECT and PET
2
2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012
3
3 “projection” “tracer”
4
4 PET SPECT CT y E (x)dx L e ( )d L y T I I 0 e ( )d L y E (x) L e ( )d x d dx
5
5 reconstruction
6
6 Metabolic images, characteristics depend on tracer specificity tracer sensitivity tracer sensitivity detection system detection system
7
7 Medical physicist diagnosticsdiagnostics: –QC camera hardware & software –Image formation, reconstruction –Image analysis –(dosimetry) therapytherapy –dosimetry researchresearch
8
8 Radionuclides
9
9 - emission 99 Mo 99m Tc 99 Tc - emission (66 hours) isomeric transition (6 hours) keV
10
10 Electron capture
11
11 Electron capture (2.83 days) 0.0 MeV EC 0.4167 MeV 0.2454 MeV 0.0 MeV (stable) 11 22 RadiationfreqMeV 11 0.905 0.171 ce-K, 1 0.083 0.145 ce-L 1, 1 0.009 0.167... 22 0.9400.245 ce-K, 2 0.0500.219... K 1 X-ray 0.4420.023... Auger-KLL 0.1060.019...
12
12 Positron or + emission 511 keV 11 C 180 o + - positronium
13
13 Radioactivity 1 mCi = 37 MBq = 37 x 10 6 events per s
14
14 Poisson noise Chance of measuring n photons when are expected : Poisson distribution resembles Gaussian
15
15 Poisson noise
16
16 Poisson noise SNR = n 1 Poisson( 1 ) n 2 Poisson( 2 ) n 1 + n 2 Poisson( 1 + 2 )
17
17 photon-electron interactions
18
18 Photon-electron interactionsTissue photo-electric Compton pair production Detectors
19
19 attenuation scatter photoelectric effect
20
20 water
21
21 Energy loss due to Compton scatter -10% E E’ 511 140
22
22 attenuation
23
23 attenuation Single photon Positron N(a) N(b)a b ab c
24
24 attenuation
25
25 Data acquisition
26
26 Scintillation time
27
27 Scintillation crystals NaI(Tl)BGOLSOGSOLaBr:Ce Photons/keV405..820..301260..70 decay time [ns]230300406516..20 lin.att.coeff @ 511keV [/cm] 0.340.950.870.670.47 wave length410480420440380 melting point651105020501950783 transparency, ease of use...
28
28 Photomultiplier tube
29
29 Detector design Single crystalmulti- crystal
30
30 Position and energy measurement output current Electronics X Y x,y,z
31
31 Multiple events output current Electronics x,y,z All wrong
32
32 Intrinsic resolution Electronics x,y,z FWHM Collimator Source X Y NaI(Tl): 4 mm
33
33 Multidetector crystal
34
34 Expensive alternatives APD: avalanche photo diode –diode in reverse mode –replaces PMT, much smaller, low voltage –works in high magnetic field Cd Zn Te detectors –direct detection of high energy photons –excellent energy resolution –high stopping power (similar to NaI(Tl))
35
35 Partial volume effect
36
36 Partial volume constant activity big pixels
37
37 Partial volume constant concentration finite resolution perfect resolution finite resolution Recovery Spill-over
38
38 Collimation
39
39 PET SPECT CT y E (x)dx L e ( )d L y T I I 0 e ( )d L y E (x) L e ( )d x d dx
40
40 Collimator LensCollimator
41
41 Collimators ParallelFanbeam Cone beamPinhole
42
42 Collimator PSF FWHM position counts
43
43 Collimator sensitivity a T R r H S r PSF(r) Sens pMol!
44
44 Collimator sensitivity a T H FWHM
45
45 d Electronic collimation r x r psf x x d
46
46 PET lines of response
47
47 PET sensitivity R d sensitivity in center:
48
48 PET resolution 511 KeV 0.3 o 2.5 mm (for 1 m FOV) maxmaxmean Mevmmmm 11 C1.1 13 N1.5 15 O2.5 18 F0.6 68 Ga2.9 82 Rb5.9 11 C0.963.91.1 13 N1.195.11.5 15 O1.728.02.5 18 F0.642.40.6 68 Ga1.908.92.9 82 Rb 3.35175.9
49
49 Coincidence detection TrueScatter SingleRandom
50
50 PET septa T d D r trues: scatters: singles: randoms: efficiency: time window:
51
51 2D and 3D PET trues: scatters: singles: randoms: N rings
52
52 Compton scatter and energy windowing
53
53 Collimator, scatter, attenuation
54
54 Energy of scattered photons Measured Simulated primary scattered Counts 0 1000 2000 3000 4000 5000 6000 020406080100120140160180200
55
55 Scatter window subtraction Simulated primary scattered Energy KeV Counts 0 1000 2000 3000 4000 5000 6000 020406080100120140160180200 Scatter PSF is energy dependent
56
56 Triple Energy Window Simulated primary scattered Energy KeV Counts 0 1000 2000 3000 4000 5000 6000 020406080100120140160180200 C2 C1 C3 Corrected counts = C1 - filter(C2 + C3)
57
57 TEW, 201 Tl cardiac phantom PeakCorrected Lower window Higher window global scale individual scale joint scale
58
58 Energy resolution Energy KeV Counts 0 1000 2000 3000 4000 5000 6000 020406080100120140160180200 SPECT, SPECT, fwhm 10 % PET BGO, PET BGO, fwhm 20 % PET LSO, GSO, LYSO PET LSO, GSO, LYSO... between 10 and 20% Bentourkia, IEEE TMI 1999
59
59 Model based scatter correction Ollinger 1996, 3D PET S A B
60
60 PET scatter PSF Measured Monte Carlo Ollinger high sampling Ollinger low sampling Ollinger, Phys Med Biol 1996
61
61 Activity outside FOVS A B
62
62 CorrectionsCrystal front end electronics Collimator Computer
63
63 Linearity correction X Y X + X Y + Y Triad XLT 24 Detector 1 14-01-1997
64
64 Energy correction
65
65 Uniformity correction E + L + Flood correctie Energy correction No correction E + Linearity divide by flood source image
66
66 Uniformity correction non-uniformity due to non-linearity dead PMT
67
67 head1head2 h1 h2 h1 h2h1 h2 h1 h2h1 h2 Tc-99m MDP – bone spect on dual head camera broken PMT
68
68 e.cam, detector 2 Broken PMT affecting high voltage
69
69 detector 1detector 2
70
70 Dead time True count rate Measured count rate 500,000 cps = 700 ns Front end: Data processing: or
71
71
72
72 Randoms correction in PET delayed window time Det 1 Det 2 time prompt: true or random random!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.