Download presentation
Presentation is loading. Please wait.
Published byRafe Rose Modified over 9 years ago
1
Using the Inner Oort Cloud to Explore the History of the Earth and Sun Nathan Kaib Advisor: Tom Quinn Collaborators: Andrew Becker, Lynne Jones University of Washington
2
Outline Background Outer Solar System primer Inner vs. outer Oort Cloud Observations Candidate inner Oort Cloud objects Prospects from future surveys What We Can Learn Oort Cloud formation and the Sun’s birth environment Comet showers and mass extinctions
3
Outline Background Outer Solar System primer Inner vs. outer Oort Cloud Observations Candidate inner Oort Cloud objects Prospects from future surveys What We Can Learn Oort Cloud formation and the Sun’s birth environment Comet showers and mass extinctions
4
Classical Kuiper Belt (pre ~1995) Leftover primordial disk Low inclination Low eccentricity
5
Scattered Disk Objects that have had Neptune encounter Inclinations inflated - ( 0 – ~20 o ) Higher eccentricities - (0.1 – ~1) Source of short- period comets
6
Outer Solar System Oort Cloud extends to ~200,000 AU (1 pc)
7
Source of Long-Period Comets
8
Long-Period Comets
10
The tide of the Milky Way also perturbs the Oort Cloud (COBE, NASA)
11
Galactic tide causes perihelion and inclination to oscillateAbout 2x as powerful as stellar passages (Heisler & Tremaine 1986)
12
Outline Background Outer Solar System primer Inner vs. outer Oort Cloud Observations Candidate inner Oort Cloud objects Prospects from future surveys What We Can Learn Oort Cloud formation and the Sun’s birth environment Comet showers and mass extinctions
13
X
14
Jupiter-Saturn Barrier Comets must have large perihelion shift to make it past Jupiter/Saturn in one orbital period Only weakly bound comets will have large perihelion changes Jupiter/Saturn shield inner solar system from inner 20,000 AU of Oort Cloud 25000 AU
15
LPCs near Earth only constrain outer Oort Cloud LPCs beyond Saturn will sample inner Oort Cloud as well LPCs and Oort Cloud a > 20,000 AU a > 1,000 AU ~
16
Outline Background Outer Solar System primer Inner vs. outer Oort Cloud Observations Candidate inner Oort Cloud objects Prospects from future surveys What We Can Learn Oort Cloud formation and the Sun’s birth environment Comet showers and mass extinctions
17
SDSS-II SN Survey Observations 2006 SQ 372
18
SDSS-II SN Survey Observations 2006 SQ 372
19
SDSS-II SN Survey Observations 2006 SQ 372
20
SDSS-II SN Survey Observations 2006 SQ 372
21
Orbit Summary a = 796 AUq = 24.2 AUi = 19.5°
22
Orbital Evolution Current orbit is transient - unstable after ~200 Myrs!
23
Two Different Origin Scenarios 1. Scattered Disk semimajor axis perihelion x
24
Two Different Origin Scenarios 2. Oort Cloud semimajor axis perihelion x OC SD
25
Simulations Scattered Disk 2,500 particles Orbit distributions based on SDO observations Run for 4.5 Gyrs Oort Cloud 10 6 particles Orbit distributions based on Kaib & Quinn (2008) sims Run for 1.4 Gyrs Non-symplectic variable timestep integrator based on SWIFT (Levison & Duncan, 1994; Kaib & Quinn, 2008)
26
Results – OC Sim. (10° < i < 30°)
31
Orbital Residence Map (OC) X 2006 SQ 372 10° < i < 30°
32
Calibrating Simulation Output For scattered disk simulation, assume: - N JFCs = 250 - Dormant:Active Comet ratio = 2 (Morbidelli & Fernandez, 2006) For Oort Cloud simulation, assume: - LPC flux (q < 5 AU) = 1.5 comets/yr (Neslusan, 2007) - Inner:Outer OC population ratio = 3 (Kaib & Quinn, 2008)
33
Orbital Residence Map (OC) X 2006 SQ 372 10° < i < 30°
34
P OC /P SD Map SQ 372 For 2006 SQ 372 : P OC /P SD 16 2006 SQ 372 2000 OO 67 (Kaib et al., 2009)
35
Origin Implications 2006 SQ 372 is at least 16 times more likely to come from the Oort Cloud compared to the Scattered Disk Which region of the Oort Cloud?
36
Inner Oort Cloud Origin Semimajor axis drawdown time vs. Perihelion drift time q = -10 AU Ejection by Saturn q = 10 AU a is fixed
37
Inner Oort Cloud Origin t q ~ a -2 t a ~ 100 Myrs Sampled by Known LPCs (~2.5%) a < 800 AU 20 AU < q < 30 AU (Kaib et al., 2009)
38
2006 SQ 372 Summary 2006 SQ 372 and 2000 OO 67 (Elliot et al. 2005) are first detected members of inner Oort Cloud population inside planetary region Pan-STARRS, LSST will discover 100’s to 1000’s of similar bodies Population statistics will constrain structure and population size of inner Oort Cloud
39
Outline Background Outer Solar System primer Inner vs. outer Oort Cloud Observations Candidate inner Oort Cloud objects Prospects from future surveys What We Can Learn Oort Cloud formation and the Sun’s birth environment Comet showers and mass extinctions
40
How did the Oort Cloud form? Pat Rawlings, NASA
41
q is ~fixed, but a undergoes random walk Planetesimal Scattering
42
If q > 40 AU then growth in a stops ~ 10 4 AU Inclination also changes
43
Semimajor axis (AU) Perihelion (AU) (Kaib & Quinn, 2008) t = 2 Gyrs
44
Semimajor axis (AU) Perihelion (AU) (Kaib & Quinn, 2008) x x x x t = 2 Gyrs LPCs SD KB OC Sedna 2000 CR 105 Buffy 2004 VN 112
45
Extended Scattered Disk ~ 10 3 AU If q was always big, orbit should be circular, low i a is too small for current external forces to shift q
46
Early Strong Perturbations Embedded Cluster Environment (Brasser et al., 2006) Open Cluster Environment (Kaib & Quinn, 2008)
47
Reproducing ESDOs Median OC Distance (AU) med min Kaib & Quinn (2008) Brasser et al. (2006)
48
Birthplace Consequences Kaib & Quinn (2008) Inner OC: a < 20,000 AU Outer OC:a > 20,000 AU Sun’s birth environment controls inner Oort Cloud enrichment and radial distribution
49
Outline Background Outer Solar System primer Inner vs. outer Oort Cloud Observations Candidate inner Oort Cloud objects Prospects from future surveys What We Can Learn Oort Cloud formation and the Sun’s birth environment Comet showers and mass extinctions
50
Comet Showers 25000 AU Rare close stellar encounters (< 5000 AU) are able to perturb more tightly bound orbits The Earth is temporarily exposed to the entire Oort Cloud
51
M * = M Sun v = 20 km/s, D min = 3000 AU t = 10 5 yrs 25,000 AU4 AU
52
Quantifying Shower Strength LPC defined as q < 5 AU M * = 0.8 M Sun v = 20 km/s D min = 1300 AU
53
v = 20 km/s Simulation Results Relative Shower Strength
54
Use impulse approximation to calculate v Sun for each stellar passage: v Sun = (2GM * )/(bv )
55
One parameter controls shower strength Relative Shower Strength
56
Finding Shower Frequency Use Rickman et al. (2008) stellar encounter code to generate ~10 6 passages Find dN( v Sun )/dt
57
One parameter controls shower strength Relative Shower Strength
58
1/ ~ ( v Sun ) -2 Relative Shower Strength
59
Regions Sampled by LPCs
60
Effects of Solar Formation Setting Inner Oort Cloud population very sensitive to formation environment of Sun (Fernadez & Brunini, 2000; Brasser et al., 2006; Kaib & Quinn, 2008)
61
Summary Inner Oort Cloud objects should be abundant beyond 10-15 AU First few objects have been discovered LSST and Pan-STARRS will discover 100’s to 1000’s and constrain inner OC This will reveal clues about the Sun’s birthplace Indicate if comet showers are source of mass extinctions
62
Divide LPC distribution by Oort Cloud distribution Probability of LPC as a function of a
63
semimajor axis (AU) perihelion (AU) Random walk In a Random walk In q Duncan et al. (1987) 30 300 3000 1000 100 16002500400063001600010000
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.