Download presentation
Presentation is loading. Please wait.
Published byReynold Burke Modified over 9 years ago
1
2.5 – Solving Absolute Value Equations
2
Absolute Value
3
2.5 – Solving Absolute Value Equations Absolute Value–unit value only
4
2.5 – Solving Absolute Value Equations Absolute Value–unit value only
5
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs)
6
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5|
7
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5
8
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| =
9
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1
10
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3
11
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=
12
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4
13
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 +
14
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5
15
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3)
16
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7|
17
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4
18
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 +
19
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15
20
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7|
21
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4
22
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 +
23
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22|
24
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4
25
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 +
26
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 + 22
27
2.5 – Solving Absolute Value Equations Absolute Value–unit value only (w/o signs) ex. |-5| = 5; |5| = 5 Example 1 Evaluate 1.4+|5y – 7| if y=-3 1.4+|5y – 7|=1.4 + |5(-3) – 7| =1.4 + |-15 – 7| =1.4 + |-22| =1.4 + 22 = 23.4
28
Example 2
29
Example 2 Solve |x – 18| = 5.
30
|x – 18| = 5
31
Example 2 Solve |x – 18| = 5. |x – 18| = 5
32
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5
33
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5
34
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5
35
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5
36
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5
37
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18
38
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 x = 23
39
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23
40
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13
41
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3
42
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0.
43
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0
44
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9
45
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9
46
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note:
47
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!
48
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!
49
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!
50
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!
51
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number!
52
Example 2 Solve |x – 18| = 5. |x – 18| = 5 x – 18 = 5x – 18 = -5 +18 +18 +18 +18 x = 23x = 13 Example 3 Solve |5x – 6| + 9 = 0. |5x – 6| + 9 = 0 -9 |5x – 6| = -9 Note: Absolute value cannot equal a negative number! x = Ø
53
Example 4 Solve 2|x| – 3 = 7
54
+3 +3
55
Example 4 Solve 2|x| – 3 = 7 +3 +3 2|x| = 10
56
Example 4 Solve 2|x| – 3 = 7 +3 +3 2|x| = 10 2 2
57
Example 4 Solve 2|x| – 3 = 7 +3 +3 2|x| = 10 2 2 |x| = 5
58
Example 4 Solve 2|x| – 3 = 7 +3 +3 2|x| = 10 2 2 |x| = 5 x = 5, x = -5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.