Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 天線 / 微波工程期中報告 論文名稱 : Time-Domain Optical Response of an Electrooptic Modulator Using FDTD NO. 12, DECEMBER 2001 論文研討人 : Mahmoud Munes Tomeh, Sebastien.

Similar presentations


Presentation on theme: "1 天線 / 微波工程期中報告 論文名稱 : Time-Domain Optical Response of an Electrooptic Modulator Using FDTD NO. 12, DECEMBER 2001 論文研討人 : Mahmoud Munes Tomeh, Sebastien."— Presentation transcript:

1 1 天線 / 微波工程期中報告 論文名稱 : Time-Domain Optical Response of an Electrooptic Modulator Using FDTD NO. 12, DECEMBER 2001 論文研討人 : Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE 報告人 : 碩研電子一甲 MA030115 張冠程 Southern Taiwan University Department of Electronic Engineering

2 2 Outline  Abstract  Introduction  Electrooptic modulator device structure  Electrooptic modulator design  Time-domain analysis of an electrooptic modulator  Time-domain device optical response to a gaussian pulse  Conclusion  References Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

3 3 Abstract inside these optical waveguides and resulting minute phase shifts imparted to optical signals propagating along the device are determined in time, allowing for the simulation of optical intensity modulation. This novel approach to LiNbO3 electrooptic modulators using a coupledFDTDtechnique allows for previously unattainable investigations into device operating bandwidth and data transmission speed. Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

4 4 Introduction(1/2)  LiNbO electrooptic technology can contribute significantly to minimizing  FDTD in-time calculation of electric fields coupled with theelectrooptic effect can provide for full simulation of a devicetime-domain optical response. Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

5 5 Introduction(2/2) (a) the top view (b) a cross-sectional view of a basic x-cut electrooptic modulator Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

6 6 Electrooptic modulator device structure  Aftersome interaction region, the optical waveguides combine, allowing the optical signals to interfere  cut design typically places the optical waveguides symmetrically in the gaps of a CPW so that light traveling in the two waveguides will experience equal Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

7 7 Electrooptic modulator design The primary design considerations for these devices are: 1)electric signal—optical signal phase velocity match 2) lowmicrowave losses; 3) 50- CPW configuration 4) lowdriving voltage (the voltage that must be applied to the RF electrodes which results in a total of phase shift between the two legs of the electrooptic modulator resulting in zero intensity output) Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

8 8 Time-domain analysis of an electrooptic modulator(1/2)  Simulating the full optical response of the device is simply not possible using the static techniques applied so far to this problem. Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

9 9 Time-domain analysis of an electrooptic modulator(2/2) a.) FDTD calculation of characteristic impedance as a function of frequency for several SiO buffer layer thicknesses for a CPW structure with a 10-m central conductor, a 10-m gap width, and a 4-m electrode thickness. b.) FDTD calculation of phase velocity as a function of frequency for several SiO buffer layer thicknesses for a CPW structure with a 10-m central conductor, a 10-m gap width, and a 4-m electrode thickness Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

10 10 Time-domain device optical response to a gaussian pulse(1/2) Electrooptic modulator time-domain optical responses to a Gaussian electric pulse for two electrode designs representing an electrooptic phase velocity match and mismatch for the same interaction length (1.7 mm). Electrooptic modulator time-domain optical response to a Gaussian electric pulse for an electrode design representing an electrooptic phase velocity match for different electrooptic interaction lengths (circle: 1.7 mm, square: 1.9 mm, triangle: 2.1 mm). Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

11 11 Time-domain device optical response to a gaussian pulse(2/2) Electrooptic modulator time-domain optical response to a Gaussian electric pulse for an electrode design representing an electrooptic phase velocity match for a long electrooptic interaction length (2.1 mm) that results in phase reversal. Electrooptic modulator time-domain optical response to a Gaussian electric pulse for an electrode design representing an electrooptic phase velocity mismatch for different electrooptic interaction lengths (circle: 1.7 mm; square: 1.9 mm; triangle: 2.1 mm) Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

12 12 Conclusion FDTD provides for a fully intuitive approach to the simu-lation of electrooptic modulator optical response. While it is clear that FDTD can be used to characterize the CPW struc-ture, it can also be a powerful tool in understanding the effects of device geometry on optical response. Using an FDTD solu-tion of the -field in time coupled to electrooptic interactions, a fully physical simulation of electrooptic modulators is pos-sible. Coupled FDTD calculations presented here have numer-ically demonstrated the dependence of electrooptic modulator performance on velocity matching. Comparisons between the matched and unmatched cases have shown the effect of phase velocity matching on bandwidth, driving voltage, and interac-tion length. Precise modeling of electrooptic modulators using coupled FDTD can be expected to contribute significantly to im-proved device performance in the future. Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

13 13 References(1/2) [1] E. J. Murphy, “Commercialization of lithium niobate modulators,” in Integrated Optical Circuits and Components: Design and Applications, E. J. Murphy, Ed. New York: Marcel Dekker, Aug. 1999. [2] R. L. Jungerman, C. Johnsen, D. J. McQuate, K. Salomaa, M. P. Zu-rakowski, R. C. Bray, G. Conrad, D. Cropper, and P. Hernday, “High-speed optical modulator for application in instrumentation,” J. Light-wave Technol., vol. 8, pp. 1363–1370, Sept. 1990. [3] G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO travelling wave optical intensity modulators,” J. Lightwave Technol., vol. 12, pp. 1807–1819, Oct. 1994. [4] K. Kawano, “High-speed shielded velocity-matched Ti : LiNbO optical modulator,” IEEE J. Quantum Electron., vol. 29, pp. 2466–2475, Sept. 1993. [5] G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, R. W. McElhanon, and A. S. Greenblatt, “40 GHz low half-wave voltage Ti : LiNbO in-tensity modulator,” Electron. Lett., vol. 28, no. 9, pp. 826–827, 1992. Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

14 14 References (2/2) [6] K. Noguchi, L. Mitomi, K. Kawano, and M. Yanagibashi, “ Highly efficient 40-GHz bandwidth Ti : LiNbO optical modulator employing ridge structure, ” IEEE Photon. Technol. Lett., vol. 5, pp. 52 – 54, Jan. 1993. [7] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D.E. Bossi, “ A review of lithium niobate modulators for fiber- optic com- munications systems, ” IEEE J. Quantum Electron., vol. 36, pp. 69 – 82,Jan. 2000. [8] S. K. Korotky and R. C. Alferness, “ Ti : LibNO integrated optic tech- nology, ” in Integrated Optical Circuits and Components: Design and Applications, L. D. Hutcheson, Ed. New York: Marcel Dekker, Aug. 1987. Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE

15 15 心得 這篇論文所提到的 FDTD ,解決了光與時間上的不同效 應,作者所使用的 FDTD 是利用 CPW 結構。也說了 FDTD 計算出 number ically 的速度,表現出速度的匹配與電光 調製性能的作用。證明了 FTDT 準確性和對未來的貢獻 Mahmoud Munes Tomeh, Sebastien Goasguen, Student Member, IEEE, and Samir M. El-Ghazaly, Fellow, IEEE


Download ppt "1 天線 / 微波工程期中報告 論文名稱 : Time-Domain Optical Response of an Electrooptic Modulator Using FDTD NO. 12, DECEMBER 2001 論文研討人 : Mahmoud Munes Tomeh, Sebastien."

Similar presentations


Ads by Google