Presentation is loading. Please wait.

Presentation is loading. Please wait.

9/14/2015PHY 711 Fall 2015 -- Lecture 91 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 9: Continue reading.

Similar presentations


Presentation on theme: "9/14/2015PHY 711 Fall 2015 -- Lecture 91 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 9: Continue reading."— Presentation transcript:

1 9/14/2015PHY 711 Fall 2015 -- Lecture 91 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 9: Continue reading Chapter 3 & 6 1.Summary & review 2.Lagrange’s equations with constraints

2 9/14/2015PHY 711 Fall 2015 -- Lecture 92

3 9/14/2015PHY 711 Fall 2015 -- Lecture 93 Comment on problem Lagrangian formulation of Brachistochrone motion: s

4 9/14/2015PHY 711 Fall 2015 -- Lecture 94

5 9/14/2015PHY 711 Fall 2015 -- Lecture 95 Comments on generalized coordinates: Here we have assumed that the generalized coordinates q  are independent. Now consider the possibility that the coordinates are related through constraint equations of the form: Lagrange multipliers

6 9/14/2015PHY 711 Fall 2015 -- Lecture 96 Simple example: u x y  

7 9/14/2015PHY 711 Fall 2015 -- Lecture 97 Force of constraint; normal to incline

8 9/14/2015PHY 711 Fall 2015 -- Lecture 98 Rational for Lagrange multipliers

9 9/14/2015PHY 711 Fall 2015 -- Lecture 99 Euler-Lagrange equations with constraints: Example:  r mg

10 9/14/2015PHY 711 Fall 2015 -- Lecture 910 Example continued:

11 9/14/2015PHY 711 Fall 2015 -- Lecture 911 Another example:

12 9/14/2015PHY 711 Fall 2015 -- Lecture 912 Another example: A particle of mass m starts at rest on top of a smooth fixed hemisphere of radius R. Find the angle at which the particle leaves the hemisphere. R 

13 9/14/2015PHY 711 Fall 2015 -- Lecture 913 Example continued

14 9/14/2015PHY 711 Fall 2015 -- Lecture 914 Example continued

15 9/14/2015PHY 711 Fall 2015 -- Lecture 915 Consider a particle of mass m moving frictionlessly on a parabola z=c(x 2 +y 2 ) under the influence of gravity. Find the equations of motion, particularly showing stable circular motion.

16 9/14/2015PHY 711 Fall 2015 -- Lecture 916

17 9/14/2015PHY 711 Fall 2015 -- Lecture 917 Stable solution when these terms add to 0:

18 9/14/2015PHY 711 Fall 2015 -- Lecture 918 Analysis of stable (circular) motion


Download ppt "9/14/2015PHY 711 Fall 2015 -- Lecture 91 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 9: Continue reading."

Similar presentations


Ads by Google