Download presentation
Presentation is loading. Please wait.
Published byDiane Long Modified over 8 years ago
1
9/14/2015PHY 711 Fall 2015 -- Lecture 91 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 9: Continue reading Chapter 3 & 6 1.Summary & review 2.Lagrange’s equations with constraints
2
9/14/2015PHY 711 Fall 2015 -- Lecture 92
3
9/14/2015PHY 711 Fall 2015 -- Lecture 93 Comment on problem Lagrangian formulation of Brachistochrone motion: s
4
9/14/2015PHY 711 Fall 2015 -- Lecture 94
5
9/14/2015PHY 711 Fall 2015 -- Lecture 95 Comments on generalized coordinates: Here we have assumed that the generalized coordinates q are independent. Now consider the possibility that the coordinates are related through constraint equations of the form: Lagrange multipliers
6
9/14/2015PHY 711 Fall 2015 -- Lecture 96 Simple example: u x y
7
9/14/2015PHY 711 Fall 2015 -- Lecture 97 Force of constraint; normal to incline
8
9/14/2015PHY 711 Fall 2015 -- Lecture 98 Rational for Lagrange multipliers
9
9/14/2015PHY 711 Fall 2015 -- Lecture 99 Euler-Lagrange equations with constraints: Example: r mg
10
9/14/2015PHY 711 Fall 2015 -- Lecture 910 Example continued:
11
9/14/2015PHY 711 Fall 2015 -- Lecture 911 Another example:
12
9/14/2015PHY 711 Fall 2015 -- Lecture 912 Another example: A particle of mass m starts at rest on top of a smooth fixed hemisphere of radius R. Find the angle at which the particle leaves the hemisphere. R
13
9/14/2015PHY 711 Fall 2015 -- Lecture 913 Example continued
14
9/14/2015PHY 711 Fall 2015 -- Lecture 914 Example continued
15
9/14/2015PHY 711 Fall 2015 -- Lecture 915 Consider a particle of mass m moving frictionlessly on a parabola z=c(x 2 +y 2 ) under the influence of gravity. Find the equations of motion, particularly showing stable circular motion.
16
9/14/2015PHY 711 Fall 2015 -- Lecture 916
17
9/14/2015PHY 711 Fall 2015 -- Lecture 917 Stable solution when these terms add to 0:
18
9/14/2015PHY 711 Fall 2015 -- Lecture 918 Analysis of stable (circular) motion
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.