Download presentation
Presentation is loading. Please wait.
Published byGeorgiana Strickland Modified over 9 years ago
1
Image Adaptive Watermarking Using Wavelet Domain Singular Value Decomposition Source:IEEE Transactions on Circuits and Systems for Video Technology, Volume: 15, Issue: 1, Jan. 2005, Pages: 96 – 102. Author: Paul Bao and Xiaohu Ma Sperker: Jen-Bang Feng
2
2 Outline Singular Value Decomposition Discrete Wavelet Transform The Proposed Scheme Experimental Results Conclusions
3
3 Singular Value Decomposition = XX m × nm × mm × n n × n DUVA 0 0 U and V are both orthogonal, U*U T =I, V*V T =I Energy:
4
4 Singular Value Decomposition
5
5 Discrete Wavelet Transform
6
6 Introduction to Wavelet ABCD EFGH IJKL MNOP A+BC+DA-BC-D E+FG+HE-FG-H I+JK+LI-JK-L M+NO+PM-NO-P ㄅㄆㄇㄈ ㄉㄊㄋㄌ ㄍㄎㄏㄐ ㄑㄒㄓㄔ ㄅ+ㄉㄅ+ㄉㄆ+ㄊㄆ+ㄊㄇ+ㄋㄇ+ㄋㄈ+ㄌㄈ+ㄌ ㄍ+ㄑㄍ+ㄑㄎ+ㄒㄎ+ㄒㄏ+ㄓㄏ+ㄓㄐ+ㄔㄐ+ㄔ ㄅ-ㄉㄅ-ㄉㄆ-ㄊㄆ-ㄊㄇ-ㄋㄇ-ㄋㄈ-ㄌㄈ-ㄌ ㄍ-ㄑㄍ-ㄑㄎ-ㄒㄎ-ㄒㄏ-ㄓㄏ-ㄓㄐ-ㄔㄐ-ㄔ ㄅㄆㄇㄈ ㄉㄊㄋㄌ ㄍㄎㄏㄐ ㄑㄒㄓㄔ Haar Wavelet Transform Phase 1) Horizontal : Phase 2) Vertical :
7
7 The Proposed Scheme 1.Apply DWT 2.Separate to blocks sized w x w 3.SVD 4.Decide d k 5. Embed
8
8 Example S: even 1 embedded odd 0 embedded
9
9 Example If 1 is embedded
10
10 Quantization Variable w k : Weight of block k w k = c 1 x m k + c 2 x σ k w max w min wkwk d max d min dkdk meanvariation
11
11 Experimental Results
12
12
13
13 Conclusions A semi-fragile watermarking for image authentication Automatically adapt for quantization Robustness to JPEG compression Fragility to various image manipulation
14
14 Two-thirds Theorem For an matrix and any orthonormal basis of, define and Then.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.