Download presentation
Presentation is loading. Please wait.
Published byMyrtle Quinn Modified over 9 years ago
1
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Lumical R&D progress report Ronen Ingbir
2
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Dense design Design variations Luminosity study Future steps 1.Phi bias 2. Delta theta 3. Real life approach 4. New selection mechanism 1. Moliere radius 2. Radiation length 3. Detector properties 4. Design optimization 1. Margins design properties 2. Events close to margins 3. Maximum pick shower design 4. Remarks Prague follow up
3
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Constant value 250 GeV Fixed non zero bias under investigation. Events Num. E weight. Log. weight. Azimuthal reconstruction
4
Two plots convinced us that the bias observed is not detector design dependent nor imperfect algorithm. HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 48 sectors design X (cm) Y (cm)
5
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Magnetic field
6
Constant value 400 GeV HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Log. weight. E weight. Polar reconstruction
7
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector ‘Pure’ electrons simulation Bhabha+Beam+BS(5e-4) Bias study
8
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Real life algorithm Working with both sides of the detector and looking at the difference between the reconstructed properties: (In real life we don’t have generated properties)
9
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Polar resolution
10
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Energy resolution
11
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 33 mrad Energy Resolution The most significant event selection cut is the geometric acceptance cut. This cut was used to get the best energy, angular resolutions and minimum biases. Events selection
12
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Out In Eout - Ein Eout + Ein P= New selection cut Ring Signal
13
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Eout-Ein Eout+Ein P= Out In
14
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 3 cylinders 3 Rings 2 cylinders 3 Rings 1 cylinders 3 Rings Eout-Ein Eout+Ein P=
15
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Dense design 0.34 cm Tungsten 0.31 cm Silicon 15 cylinders * 24 sectors * 30 rings = 10800 cells 8 cm 28 cm 0.55 cm Tungsten 0.1 cm Silicon R L 20 cm 6.1 m
16
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Basic properties ?
17
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Moliere radius 0.8cm 1.1cm X (cm) Detector Signal
18
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Radiation length 30 radiation length detector 47 radiation length detector Z (cm) Detector Signal
19
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Optimization
20
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 16 cylinders 40 rings 15 cylinders 30 rings Polar resolution & bias
21
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector 16 cylinders 40 rings 15 cylinders 30 rings Energy resolution
22
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Energy Resolution Events New geometric acceptance
23
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Optimization
24
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Optimization
25
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Margins around cells Having margins Means Losing Information
26
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector One cylinder One sector Radius (cm) (deg) Detector signal Loosing information
27
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Energy resolution
28
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Polar resolution
29
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Our basic detector is designed with 30 rings * 24 sectors * 15 cylinders = 10,800 channels Do we use these channels in the most effective way ? Maximum pick shower design 30 rings 15 cylinders 20 cylinders 10 cylinders 24 sectors * 15 rings * (10 cylinders + 20 cylinders) = 10,800 channels 4 rings15 rings11 rings 10 cylinders
30
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Maximum pick shower design Basic Design Angular resolution improvement without changing the number of channels Other properties remain the same Constant value Polar reconstruction 0.11e-3 rad 0.13e-3 rad
31
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Remarks Options to minimize the margin effect: 1.Rings rotation. 2.Different cylinders segmentation Maximum pick shower design can enable us to reduce the number of channels while maintaining properties or to improve properties while kipping the same number of channels.
32
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector Pure electron MC Detector properties Events selection ‘Real physics’ MC + digitization noise + New max pick design + Margins Final optimization ‘Real physics’ MC Bhabha + Beamstrahlung + Beamspread R&D status & future steps High statistics MC for required precision
33
HEP Tel Aviv UniversityLumical - A Future Linear Collider detector THE END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.