Download presentation
Presentation is loading. Please wait.
Published byVictor Sims Modified over 9 years ago
1
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments
2
The Group Tomasz Brzozowski Maria Mączyńska Jerzy Zachorowski Michał Zawada Wojciech Gawlik IF UJ
3
Magneto-Optical Trap I I 85 Rb N 10 8 T 100 K
4
Spectroscopy of Cold Atoms -40-20020 -50 -40 -30 -20 -10 0 20 I = 22.4 · I 0 Detuning from the 3-4 resonance [MHz] trap - probe [MHz] -2012 -202 1
5
Laser system
6
Central Structure Raman transitions between light-shifted Zeeman sublevels Raman transitions between vibrational levels in the optical lattice
7
Zeeman sublevels
8
Vibrational levels Electric field in the trap: 6 beams of different polarizations. Relative phases not fixed, but relatively stable. Interference: intensity and/or polarization modulation. Additional optical forces (dipole forces). Atoms cooled and localized in the lattice nodes. Atomic movement quantized: vibrational energy levels.
9
Remarks New experiments: trap modulation Difference absorption-wave mixing Ultra-narrow central resonance
10
Bose-Einstein Condensation de Broglie wavelength: density n, distance n 1/3, condensation when: Ketterle, PRL 77, 416 (1996)
11
Lower temperatures Spontaneous emission: temperatures limited to 10 – 1 K „Dark traps”: optical dipole or magnetic forces Cooling by evaporation 100 nK 100 K 300 K MOT MT
12
Three steps to BEC Magneto-Optical Trap: 1. Magneto-Optical Trap: temperature 10 mK, density 10 10 cm -3 limit – interaction with light. Magnetic Trap: 2. Magnetic Trap: trap in field minimum - only „low-field-seeking” states losses at B = 0. Evaporation cooling: 3. Evaporation cooling: forced evaporation of hot atoms, thermalisation by collisions.
13
400 nK 200 nK 50 nK 1995 - E. Cornell & C. Wieman Rb 87 Evidence: narrow peak in velocity distribution peak’s amplitude when T cloud shape same as that of the potential well
14
Over 30 laboratories produce BEC 87 Rb, 23 Na, 7 Li, ↑H, He*,... Experiments with BEC Matter-wave optics: condensate interference, atom laser Nonlinear atom optics Superfluidity, vortices Ultra-low density condensed-matter: Mott insulator Cold fermionsNow
15
Matter-wave Optics – Atom Optics coherent waves interference MIT ”atom laser” MPQ NIST
16
Nonlinear atom-optics k in = k out in = out a)light waves (material medium nonlinearity) b) matter waves (always nonlinear)BEC 1999 NIST (W. Phillips) & Marek Trippenbach (UW)
17
Superfluidity, Vortices MIT LENS, Florence
18
Ultra-low density condensed-matter Mott transition MPQ – Garching
19
6000 87 Rb atoms loading time 8 s cooling time 2,1 s current 2A Micro-BEC Garching
20
Micro-BEC 2 Tubingen 87 Rb Number of atoms in BEC: 10 6 Condensation at T=1 K Cooling time 27s
21
Cold fermions Do not thermalize (Pauli exclusion) Sympathetic cooling e.g. fermion 40 K & boson 87 Rb, fermion 6 Li & boson 7 Li 2001 R. Hulet (Rice) Li 7 Li 6 1999 D. Jin (JILA) 40 K
22
Our way towards BEC MOT MT Magneto-optical trapping Magneto-optical trapping T 30 K, N 10 8 Transfer to magnetic trap by radiation pressure, recapture in a MOT recapture in a MOT separated vacuum regions differential pumping (10 -8 mbar 10 -11 mbar) Magnetic trapping: Magnetic trapping: forced evaporation of hottest atoms, thermalization by collisions T 100 nK, N 10 5 - 10 6 Element 87 Rb
23
Transfer of atoms repetitive pushing by resonant light beam, recapture in lower MOT collection speed: 10 8 –10 10 s -1 loading of lower MOT: 10 7 –10 9 s -1 constant pushing by narrow light beam (Dalibard) flux: ~10 8 s -1 magnetic transfer directly into magnetic trap (Hänsch ) 30% efficiency, complicated.
24
Magnetic traps QUIC = Quadrupole + Joffe configuration: B ≠ 0 at trap center DalibardHänsch
25
September 2002 Laser system prepared Upper MOT ready & operating Next steps: transfer & recapture magnetic trapping
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.