Download presentation
Presentation is loading. Please wait.
Published byEmma Logan Modified over 9 years ago
1
a b Submillimeter measurements of the Criegee intermediate CH 2 OO, in the gas phase ADAM M. DALY, BRIAN J. DROUIN, SHANSHAN YU Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 June 18, 2014 WH07 1 Journal of Molecular Spectroscopy, Volume 297, March 2014, Pages 16-20, ISSN 0022-2852, http://dx.doi.org/10.1016/j.jms.2014.01.002
2
a b Environmental Aspects OH radical reservoir NOx and OHx budget Atmospheric Aspects Lightning of methane Ethylene reactions with ozone M. C. McCarthy, L. Cheng, K. N. Crabtree, O. Martinez, T. L. Nguyen, C. C. Womack, J. F. Stanton, J. Phys. Chem. Lett., (2013) 4133-4139. Ultimately we would like to study C 2 H 4 with O 3 CH 2 OO June 18, 2014WH072
3
a b The first direct detection of CH 2 OO: First with Cl-initiated oxidation of DMSO using photoionization and mass spectroscopy made by Taatjes et al. J.A.C.S (2008),130, 118830. Followed by photolysis of CH 2 I 2 in excess O 2 in Welz, et al. Science 335, (2012) 204. Now there are numerous studies: Microwave: CH 2 Br 2 + O 2 and CH 2 OO – Microwave Nakajima and Endo, J. Chem. Phys. 139, (2013) 101103 CH 4 + O 2 to make CH 2 OO – Microwave McCarthy, et al. J. Phys. Chem Lett. 4, (2013), 4133 Infrared: CH 2 I 2 + O 2 to make CH 2 OO Su, et al. Science 340, (2013) 174 UV CH 2 I 2 + O 2 to make CH 2 OO Beames, et al. J.A.C.S. (2012), 134, 20045 What about the submillimeter? Only 4 transitions had been measured in both microwave studies! Kisiel, et al. J. Chem. Phys 105 (1996) 1778 June 18, 2014WH073
4
a b a b Simplest Criegee Intermediate : Ozonolysis of ethylene R. Criegee, Angew. Chem. Int. Ed. Engl., 14 (1975) 745–752 and CH 2 OO(?) http://earthobservatory.nasa.gov/Features/WorldOfChange/ozone.php NASA atmosphere investigations: HOONO, IO, OH, HO 2, BrO, O 3, CH 3 Cl, ClO, CO, H 2 O HCl, HCN, HOCl, N 2 O, SO 2. http://mls.jpl.nasa.gov/ June 18, 2014WH074
5
a b JPL/SAO balloon payload just prior to launch 9/22/07 Combined payload includes: Submillimeter Limb Sounder PI - Robert Stachnik Mark IV solar interferometer PI – Geoffrey Toon Balloon OH limb sounder PI – Herbert Pickett Far-Infrared Spectrometer PI – Kenneth Jucks (SAO/HQ) FIR remote emission measurements have focused on radicals e.g. OH, HO 2, BrO, ClO. (low concentration species) Stachnik RA, Millan L, Jarnot R, Monroe R, McLinden C, Kuehl S, Pukite J, Shiotani M, Suzuki M, Kasai Y. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer. Atmospheric Chemistry and Physics 2013 Mar 22;13(6):3307-19. This measurement of the THz spectrum of the Criegee intermediate allows remote sensing instruments like SLS and FIRS-2 to ‘see’ it in the earth’s atmosphere June 18, 2014WH075
6
a b λ(μm) 1.00×10 -6 1.00×10 -4 1.00×10 -3 (3.80-7.80)×10 -1 3.00×10 2 1.00×10 6 Cosmic Rays γ-Rays X-Rays UV Visible Infrared Microwave Radio (Hz) 3.00×10 20 3.00×10 18 3.00×10 16 (7.89-3.84)×10 14 1.00×10 12 3.00×10 8 (cm -1 ) 1.00×10 10 1.00×10 8 1.00×10 6 (2.63-1.28)×10 4 3.33×10 1.00×10 -2 The electromagnetic spectrum Terahertz Microwave and millimeter/submillimeter spectroscopy - Spectrum of isotopes and vibrational states are unique - In pulsed free jet: different confirmations and ground vibrational state - In static and flow cells: Multiple vibrational states up to 1000 cm -1 June 18, 2014WH076
7
a b CH 2 I 2 in the millimeter range CH 3 I HO 2 CH 2 IO IO CH 2 OO CH 2 I 2 with O 2 June 18, 2014WH077
8
a b a b MethodCCSDM06HF B3LYP M06HF triplet Basis set C,H,Oaug-cc-pVTZaug-cc-pV5Zaug-cc-pVTZ6-311++G** Expt* A78146.379902.079372.179458.3 81135.264268.677752.655(16) B12564.812849.212780.112648.6 12327.112487.112465.247(13) C10824.411069.111007.710911.6 10701.310455.610721.313(16) aa 5.745.275.265.66 4.471.41 bb 0.500.24 0.21 0.360.86 Table 1. Results of calculations performed with different methods and basis set for CH 2 OO. *Both a and b dipole detected through using double resonance June 18, 2014WH078 9 sets of rotational constants from Isotopic substitution: 13 C, 18 O and 2 H reported in the two Microwave papers.
9
a b a b MethodCCSDM06HF B3LYP M06HF triplet Basis set C,H,Oaug-cc-pVTZaug-cc-pV5Zaug-cc-pVTZ6-311++G** Expt* A78146.379902.079372.179458.3 81135.264268.677752.655(16) B12564.812849.212780.112648.6 12327.112487.112465.247(13) C10824.411069.111007.710911.6 10701.310455.610721.313(16) aa 5.745.275.265.66 4.471.41 bb 0.500.24 0.21 0.360.86 Table 1. Results of calculations performed with different methods and basis set for CH 2 OO. *Both a and b dipole detected through using double resonance June 18, 2014WH079
10
a b a b Experimental Optimum Settings: 40 mtorr Ar, 20 mtorr O2, with a current of 0.5 mA when 1 kV Frequency Range 220-320, 580-680 and 970-1080 GHz June 18, 2014WH0710
11
a b a b Experimental Optimum Settings: 40 mtorr Ar, 20 mtorr O2, with a current of 0.5 mA when 1 kV Frequency Range 220-320, 580-680 and 970-1080 GHz June 18, 2014WH0711
12
a b June 18, 2014WH0712 PA SN609WR-10 Amplifier Module APH347 PA SN725WR-10 Amplifier Module APH416 PA SN709WR-10 Amplifier Module APH414 Attenuator2dB fixed waveguide attenuator JPL PN 10268917-1 SN5M1: 250 GHz Frequency Tripler
13
a b a b Experimental Optimum Settings: 40 mtorr Ar, 20 mtorr O2, with a current of 0.5 mA when 1 kV Frequency Range 220-320, 580-680 and 970-1080 GHz June 18, 2014WH0713
14
a b CH 2 OO Formic Acid June 18, 2014WH0714
15
a b CH 2 OO Formic Acid June 18, 2014WH0715
16
a b June 18, 2014WH0716
17
a b June 18, 2014WH0717
18
a b June 18, 2014WH0718
19
a b June 18, 2014WH0719
20
a b a b Analysis This work s-reduction This work a-reductionMcCarthy et al.*Nakajima et al.** A/MHz 77748.9467(183) A /MHz 77748.9491(186)77748.8661(122)77752.655(16) B/MHz 12465.03461(152) B /MHz 12465.17311(175)12465.2577(127)12465.247(13) C/MHz 10721.50174(139) C /MHz 10721.36435(161)10721.2765(131)10721.313(16) D J /kHz 11.206080(810) J /kHz 11.65968(157)11.2913.61 D JK /kHz -61.5990(165) JK /kHz -64.3407(190)-68.02-55.44 D K /kHz 2651.1(119) K /kHz 2658.9(120)2565.976345.7 d 1 /kHz -2.339250(878) J /kHz 2.338910(927)2.262.09 d 2 /kHz -0.227120(787) K /kHz 69.156(236)60.6896.84 H J /mHz 8.200(232) J /mHz 10.900(556)-- H JK /mHz -279.40(387) JK /mHz 252.(127)-- H KJ /mHz -22697.0(878) KJ /mHz -24600.(452)-- h 1 /mHz 5.208(267) J /mHz 5.577(291)-- h 2 /mHz 1.474(233) JK /mHz -11.0(718)-- h 3 /mHz 0.526(108) K /mHz 29000.(6725)-- N dist /N total 164/210 44 fit / MHz 0.1020.1080.0230.017 Spectroscopic Parameters for CH 2 OO June 18, 2014WH0720
21
a b Detected formic acid and formaldehyde CH 3 I and IO Several unidentified species in the discharge of CH 2 I 2 and O 2 No b-type transitions could be observed up to 1.5 THz Initial studies with C 2 H 4 and O 3 in a flow system could not produced CH 2 OO June 18, 2014WH0721
22
a b a b Subsequent Work CH 4 and O 2 / C 2 H 4 and O 3 – Initial studies with ethylene and ozone were unsuccessful with and without discharge. CH 3 CHCOO – using CH 3 CHBr 2 + O 2 in the Microwave Nakajima and Endo – Using CH 3 CHI 2 + O 2 in the UV by Beams, et al. – CH 3 CH 2 OO observed by Rupper, et al using 3-pentanone and CH 3 CH 2 Br We have tried in the laboratory flow discharge with Ar/O 2 – CH 3 CH 2 OH, CH 3 CH 2 CN and CH 3 CH 2 I a a Extended ground fit and a tentative assignment of excited vibration state June 18, 2014WH0722
23
a b a b Acknowledgements Dr. Brian Drouin and Dr. Shanshan Yu The Sander group at JPL – Linhan Shen Tim Crawford NASA California Institute of Technology June 18, 2014WH0723
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.