Download presentation
Presentation is loading. Please wait.
Published byLindsey Blake Modified over 9 years ago
1
Penn ESE370 Fall2014 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 11: September 22, 2014 MOS Transistor Operating Regions Part 2
2
Today Operating Regions (continued) –Resistive –Saturation –Velocity Saturation –Subthreshold Drain Induced Barrier Lowering Penn ESE370 Fall2014 -- DeHon 2
3
Last Time… Penn ESE370 Fall2014 -- DeHon 3
4
Channel Evolution Increasing Vgs Penn ESE370 Fall2014 -- DeHon 4
5
Threshold Voltage where strong inversion occurs threshold voltage –Around 2 ϕ F –Engineer by controlling doping (N A ) Penn ESE370 Fall2014 -- DeHon 5
6
Resistive Region V GS >V T, V DS small Penn ESE370 Fall2014 -- DeHon 6
7
Channel Field When voltage gap V G -V x drops below V T, drops out of inversion –Occurs when: V GS -V DS < V T –Channel is “pinched off” –Current will flow, but cannot increase any further Penn ESE370 Fall2014 -- DeHon 7
8
Saturation V DS > V GS -V T Penn ESE370 Fall2014 -- DeHon 8
9
9 Blue curve marks transition from Linear to Saturation Saturation Region
10
New Stuff Penn ESE370 Fall2014 -- DeHon 10
11
Preclass 1 What is electrical field in channel? –L eff =25nm, V DS =1V –Field = V DS /L eff Velocity: v=F*μ –Electron mobility: μ n = 500 cm 2 /(V s) What is electron velocity? Penn ESE370 Fall2014 -- DeHon 11
12
Same Phenomena I = (1/R) × V I increases linearly in V What’s I? – Q/ t –Speed at which charge moves F=V/L v= ×F=( /L) ×V Velocity increases linearly in V What’s a moving electron? Penn ESE370 Fall2014 -- DeHon 12
13
Short Channel Model assumes carrier velocity increases with field –Increases with voltage Are there limits to how fast things (including electrons) can move? Penn ESE370 Fall2014 -- DeHon 13 S D
14
Short Channel Model assumes carrier velocity increases with field –Increases with voltage There is a limit to how fast carriers can move –Limited by scattering to 10 5 m/s < speed-of-light How relate to preclass 1b velocity? Encounter when channel short –Modern processes, L is short enough Penn ESE370 Fall2014 -- DeHon 14 S D
15
Velocity Saturation At what voltage do we hit the speed limit? (preclass 1c) This is V dsat –The voltage at which velocity (current) saturates Penn ESE370 Fall2014 -- DeHon 15
16
Velocity Saturation Once velocity saturates: Penn ESE370 Fall2014 -- DeHon 16
17
Velocity Saturation Once velocity saturates: Can still increase current with parallelism –W – make it wider –V gs -V t – make it deeper Penn ESE370 Fall2014 -- DeHon 17 S D
18
Velocity Saturation How does this V dsat compare to the threshold we have been using? Penn ESE370 Fall2014 -- DeHon 18
19
Velocity Saturation Penn ESE370 Fall2014 -- DeHon 19
20
Subthreshold Penn ESE370 Fall2014 -- DeHon 20
21
Below Threshold Transition from insulating to conducting is non-linear, but not abrupt Current does flow –But exponentially dependent on V GS Penn ESE370 Fall2014 -- DeHon 21
22
Subthreshold Penn ESE370 Fall2014 -- DeHon 22
23
Subthreshold W/L dependence follow from resistor behavior (parallel, series) –Not shown explicitly in text λ is a channel width modulation effect Penn ESE370 Fall2014 -- DeHon 23 S D
24
Steady State What current flows in steady state? What causes (and determines) the magnitude of current flow? Which device? Penn ESE370 Fall2014 -- DeHon 24
25
Leakage Call this steady-state current flow leakage Ids leak Penn ESE370 Fall2014 -- DeHon 25
26
Subthreshold Slope Exponent in V GS determines how steep the turnoff is –Every S Volts –Divide I DS by 10 Penn ESE370 Fall2014 -- DeHon 26
27
Subthreshold Slope Exponent in V GS determines how steep the turnoff is –Every S Volts ( S not related to source ) –Divide I DS by 10 n – depends on electrostatics –n=1 S=60mV at Room Temp. (ideal) –n=1.5 S=90mV –Single gate structure showing S=90-110mV Penn ESE370 Fall2014 -- DeHon 27
28
I DS vs. V GS Penn ESE370 Fall2014 -- DeHon 28
29
Subthreshold Slope If S=100mV and V th =300mV, what is Ids(Vgs=300mV)/Ids(Vgs=0V) ? What if S=60mV? Penn ESE370 Fall2014 -- DeHon 29
30
Threshold Penn ESE370 Fall2014 -- DeHon 30
31
Threshold Describe V T as a constant Induce enough electron collection to invert channel Penn ESE370 Fall2014 -- DeHon 31
32
V DS impact In practice, V DS impacts state of channel Penn ESE370 Fall2014 -- DeHon 32
33
V DS impact Increasing V DS, already depletes portions of channel Penn ESE370 Fall2014 -- DeHon 33
34
V DS impact Increasing V DS, already depletes portions of channel Need less charge, less voltage to invert Penn ESE370 Fall2014 -- DeHon 34
35
Drain-Induced Barrier Lowering (DIBL) Penn ESE370 Fall2014 -- DeHon 35 VTVT V DS
36
DIBL Impact Penn ESE370 Fall2014 -- DeHon 36
37
In a Gate? What does it impact most? –Which device, has large Vds? Vin=Vdd ? Vin=Gnd ? –How effect operation? Speed of switching? Leakage? Penn ESE370 Fall2014 -- DeHon 37
38
In a Gate V DS largest for off device –Easier to turn on Penn ESE370 Fall2014 -- DeHon 38
39
In a Gate V DS largest for off device –Easier to turn on –Leak more Penn ESE370 Fall2014 -- DeHon 39
40
PMOS Similar phenomena to NMOS Signs different –Negative V th –turn on when less than this Reason based on carriers Penn ESE370 Fall2014 -- DeHon 40
41
Approach Identify Region Drives governing equations Use to understand operation Penn ESE370 Fall2014 -- DeHon 41
42
Big Idea 3 Regions of operation for MOSFET –Subthreshold –Resistive –Saturation Pinch Off Velocity Saturation –Short channel Penn ESE370 Fall2014 -- DeHon 42
43
Admin Text 3.3.2 – highly recommend read –Finish it up on Wednesday Office Hours: M, T, W HW4 due Thursday Midterm 1 next Monday –Midterms from 2010, 2011, 2012, 2013 All online … both with and without answers Suggest start without answers Penn ESE370 Fall2014 -- DeHon 43
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.