Download presentation
1
Multiply one equation, then add
EXAMPLE 1 Multiply one equation, then add Solve the linear system: 6x + 5y = 19 Equation 1 2x + 3y = 5 Equation 2 SOLUTION STEP 1 Multiply Equation 2 by –3 so that the coefficients of x are opposites. 6x + 5y = 19 6x + 5y = 19 2x + 3y = 5 –6x – 9y = –15 STEP 2 Add the equations. –4y = 4
2
Multiply one equation, then add
EXAMPLE 1 Multiply one equation, then add STEP 3 Solve for y. y = –1 STEP 4 Substitute –1 for y in either of the original equations and solve for x. 2x + 3y = 5 Write Equation 2. 2x + 3(–1) = 5 Substitute –1 for y. 2x + (–3) = 5 Multiply. 2x = 8 Subtract –3 from each side. x = 4 Divide each side by 2.
3
Multiply one equation, then add
EXAMPLE 1 Multiply one equation, then add ANSWER The solution is (4, –1). CHECK Substitute 4 for x and –1 for y in each of the original equations. Equation 1 Equation 2 6x + 5y = 19 2x + 3y = 5 6(4) + 5(–1) = 19 ? 2(4) + 3(–1) = 5 ? 19 = 19 5 = 5
4
Multiply both equations, then subtract
EXAMPLE 2 Multiply both equations, then subtract Solve the linear system: 4x + 5y = 35 Equation 1 2y = 3x – 9 Equation 2 SOLUTION STEP 1 Arrange the equations so that like terms are in columns. 4x + 5y = 35 Write Equation 1. –3x + 2y = –9 Rewrite Equation 2.
5
EXAMPLE 2 Multiply both equations, then subtract STEP 2 Multiply Equation 1 by 2 and Equation 2 by 5 so that the coefficient of y in each equation is the least common multiple of 5 and 2, or 10. 4x + 5y = 35 8x + 10y = 70 –3x + 2y = –9 –15x +10y = –45 STEP 3 Subtract: the equations. 23x = 115 STEP 4 Solve: for x. x = 5
6
Multiply both equations, then subtract
EXAMPLE 2 Multiply both equations, then subtract STEP 5 Substitute 5 for x in either of the original equations and solve for y. 4x + 5y = 35 Write Equation 1. 4(5) + 5y = 35 Substitute 5 for x. y = 3 Solve for y. ANSWER The solution is (5, 3).
7
Multiply both equations, then subtract
EXAMPLE 2 Multiply both equations, then subtract CHECK Substitute 5 for x and 3 for y in each of the original equations. Equation 1 Equation 2 4x + 5y = 35 2y = 3x – 9 4(5) + 5(3) = 35 ? 2(3) = 3(5) – 9 ? 35 = 35 6 = 6 ANSWER The solution is (5, 3).
8
GUIDED PRACTICE for Examples 1 and 2 Solve the linear system using elimination. 6x – 2y = 1 1. –2x + 3y = –5 ANSWER The solution is (–0.5, –2).
9
GUIDED PRACTICE for Examples 1 and 2 Solve the linear system using elimination. 2x + 5y = 3 2. 3x + 10y = –3 ANSWER The solution is (9, –3).
10
GUIDED PRACTICE for Examples 1 and 2 Solve the linear system using elimination. 3x – 7y = 5 3. 9y = 5x + 5 ANSWER The solution is (–10, –5).
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.