Download presentation
Presentation is loading. Please wait.
Published byErnest Stokes Modified over 9 years ago
1
Primordial Non-Gaussianity in Multi-Scalar Slow-Roll Inflation In collaboration with S.Yokoyama& T.Tanaka Teruaki Suyama ( Institute for Cosmic Ray Research, University of Tokyo, Japan ) arXiv:0705.3178
2
Inflation in the early universe Introduction Very appealing idea Flatness problem Horizon problem Monopole problem solves generate primordial perturbation But, the mechanism of inflation itself is still unkown. Inflaton is scalar field?What kind of scalar field? How many field? If these are resolved, it would be a great progress for physics and cosmology. What kind of potential energy?
3
Observational cosmology is entering a precision era. http://www.rssd.esa.int/index.php?project=Planck http://map.gsfc.nasa.gov/ COBE (1992)WMAP (2003)PLANCK (200X) Consistent with inflation Excluded some inflation models Constraints will be stronger Useful information of second order perturbations will be obtained ( Non- Gaussianity ) One characteristic of PLANCK discovered temperature anisotropy
4
Non-Gaussianity Non-Gaussianity of the perturbation ・・・ perturbation that does not obey the Gaussian distribution Form of non-Gaussianity frequently used in literatures : primordial perturbation of the metric : Gaussian variable Observational limit on (Komatsu et al. 2003) PLANCK will detect the non-Gaussianity if (Komatsu&Spergel, 2001)
5
We can expect non-Gaussianity will be an useful approach to probe the early universe. Then how useful ?? (What situation is the large non-Gaussianity generated?) Non-Gaussianity in some inflation models Single field inflation model ・・・・・ Detection is hopeless Curvaton model ・・・・・ : ratio of energy density of the curvaton field to total energy density at curvaton decay If r is small, (Moroi&Takahashi 2001, Lyth&Wands 2002) etc. ・ ・ ・ ( Maldacena 2003) There are models that generate large non-Gaussianity.
6
Then in what situation is detectable large non-Gaussianity generated? We have calculated generated in the multi-scalar slow-roll inflation for arbitrary number of scalar fields and arbitrary form of the potential. It is important to have theoretical understanding about the generative mechanism of non-Gaussianity.
7
situation inflation Radiation dominated Matter dominated totay CMB reheating Length scale Super horizon scale obseved = primordial + generated in post-inflationary era + generated after horizon-reentry by secondary effect
8
Evolution of the curvature perturbation on super-horizon scale Separate universe approach Local expansion= expansion of the unperturbed universe (e.g., Sasaki&Stewart, 96) e-folding number between and Friedmann universe Curvature perturbation If we know correlation functions of, we can calculate correlation functions of. δN formalisim
9
Curvature perturbation at If slow-roll conditions are satisfied, are Gaussian to a good approximation. (Seery&Lidsey, 2005) (Lyth&Rodriguez, 2005) To leading order
10
Slow-roll conditions
11
One problem Violation of the slow-roll condition Field space Hubble=const. surface Background trajectories We assume that the complete convergence occurs during slow-roll conditions are satisfied. We choose as a time after the complete convergence of background trajectories in field space occurred. After, the curvature perturbation remains constant as long as the relevant scale is super-horizon scale. (Lyth, Malik&Sasaki, 2005)
12
Result where
13
can be written by two D-component vectors and. What we have found Only 2D informations are enough. Equations for two vectors Solve until under initial condition. Useful for numerical calculation !! ( D is a number of scalar fields.) Solve until under initial condition.
14
We multiply whenever field derivative appears in the potential. Order estimate of Order counting Rough order estimate gives Possible loophole may become large. 1) 2) Violate the condition
15
Summary We studied the generation of non-Gaussianity in multi-scalar slow-roll inflation. Final expression of shows that ( detection of such non-Gaussianity in the near future is hopeless. ) There remains some possibilities to generate large non-Gaussianity. ( e.g. larger third derivatives of the potential ) At most 2D quantities are enough to obtain. Quite useful for the numerical calculation. Rough order estimate gives small non-Gaussianity even in the models with non-separable potential.
16
おまけ
17
Inflation models with specific form of the potential Two-field inflation model N-flation model (Kim&Liddle, 2006) (Vernizzi&Wands 2006, Choi et al. 2007) (Battefeld&Easther, 2006) (Choi et al. 2007)
18
in Multi-scalar slow-roll inflation Multi-scalar slow-roll inflation インフレーションのダイナミクスが、 single field で記述されるとは限らない 以下、 D 個のスカラー場の場合を考え る 多成分の場によるインフレーションのダイナミ クス Slow-roll 近似 Slow-roll 条件 を仮定
19
Field space Hubble= 一定面 trajectory Slow-roll 条件が破れる : trajectory が収束する時 刻 では、断熱揺らぎの み 以降を考えなくてもよい での曲率揺らぎ Slow-roll 条件のもとでは、 は非常に良い精度で Gaussian (Seery&Lidsey, 2005) このとき は、保存する (Lyth et al., 2005)
20
の三点相関から (Lyth&Rodriguez, 2005) と を求めればよ い 一つの問題点 もし が、 slow-roll 条件が破れた後の時刻ならば、 slow-roll 条件が破れた後の進化も知る必要がある 今回は、そこまでの解析は無理 Slow-roll 条件が破れる Field space Hubble= 一定面 trajectory Slow-roll の間に生成される non-Gaussianity だけ を評価する。あるいは、 slow-roll 中に trajectory が収束すると仮定する。
21
と を求 める Analytic formula for the non-linear parameter と展開
22
一次の解 二次の解
23
は、二つのベクトル と で決 まる。 上の式から分かること Naïve な予想 ( 2D 個の情報で十分 ) なので、 個の情報が必要かな 二つのベクトルの従う式 を初期条件に まで解 く
24
と の表式 Slow-roll 条件を使うと Hubble 一定 ≒ ポテンシャル V 一定 なので これから δN と の間に関係が付 く Field space V= 一定
25
これを δN について解くと
26
最終的な表式 オーダー評価 仮定 Field の微分が一発掛かるたびに だけオーダーが下がる ここで 大雑把に見積もると
27
Possible loophole もしかすると は、大きくなる かも 1) 2) 三階微分が小さく抑えられている必要はない という large non-Gaussianity が生成される可能性は残ってい る Slow-roll inflation の枠組みで
28
まとめ Multi-scalar slow-roll inflation で生成される non-Gaussianity について調べた 得られた の表式を見ると D×D 個もの情報はいらず、高々 2D 個 だけの情報で決まる ( 数値計算に便 利 ) 大雑把なオーダー評価では、(観測は絶望 的) ただし、 となる可能性は残されて いる (ポテンシャルの三階微分を大きくするとか)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.