Download presentation
Presentation is loading. Please wait.
Published byMae Smith Modified over 8 years ago
1
Riemann Sums and the Definite Integral
2
represents the area between the curve 3/x and the x-axis from x = 4 to x = 8
3
Four Ways to Approximate the Area Under a Curve With Riemann Sums Left Hand Sum Right Hand Sum Midpoint Sum Trapezoidal Rule
4
Approximate using trapezoidal rule with four equal subintervals 1.Enter equation into y1 2.2 nd Window (Tblset) 3.Tblstart: 4 4.Tbl: 1 5.2 nd Graph (Table)
5
Approximate using trapezoidal rule with four trapezoids of equal width
6
Approximate using trapezoidal rule with n = 4
7
For the function g(x), g(0) = 3, g(1) = 4, g(2) = 1, g(3) = 8, g(4) = 5, g(5) = 7, g(6) = 2, g(7) = 4. Use the trapezoidal rule with n = 3 to estimate
8
If the velocity of a car is estimated at estimate the total distance traveled by the car from t = 4 to t = 10 using five trapezoids of equal width
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.