Download presentation
Presentation is loading. Please wait.
Published byPhilippa Black Modified over 8 years ago
1
I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph + and – ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive
2
I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph + and – ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive
3
I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph + and – ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive
4
I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph + and – ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive
5
I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph + and – ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive
6
I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph + and – ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.