Download presentation
Presentation is loading. Please wait.
Published byKevin Howard Modified over 9 years ago
1
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla a. Phylum Trilobita - jointed appendages on every segment - dominated in Paleozoic (600 – 250 mya)
2
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla b. Phylum Chelicerata 1. Diversity Eurypterids (“Sea Scorpions”)
3
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla b. Phylum Chelicerata 1. Diversity Eurypertids Horseshoe “Crabs”
4
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla b. Phylum Chelicerata 1. Diversity Scorpions Arachnids Spiders Mites Ticks
5
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla b. Phylum Chelicerata 2. Biology - first terrestrial animals – 450 mya (scorpion-like)
6
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla b. Phylum Chelicerata 2. Biology - first terrestrial animals – 450 mya - two body segments: cephalothorax (fusion) abdomen
7
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla b. Phylum Chelicerata 2. Biology - first terrestrial animals – 450 mya - two body segments: cephalothorax (fusion) abdomen - Fusion of abdominal segments
8
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla b. Phylum Chelicerata 2. Biology - first terrestrial animals – 450 mya - two body segments: cephalothorax (fusion) abdomen - Fusion of abdominal segments - Gills or “book lungs”
9
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla c. Phylum Myriapoda 1. Diversity Pauropods
10
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla c. Phylum Myriapoda 1. Diversity Pauropods Centipedes
11
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla c. Phylum Myriapoda 1. Diversity Pauropods Centipedes Millipedes
12
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla c. Phylum Myriapoda 2. Biology - spiracles for breathing
13
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla d. Phylum Crustacea 1. Diversity Remipede
14
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla d. Phylum Crustacea 1. Diversity Decapods (Shrimp, Loster, Crabs)
15
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla d. Phylum Crustacea 1. Diversity Decapods (Shrimp, Loster, Crabs) Copepods Barnacles
16
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla d. Phylum Crustacea 2. Biology - three body regions - appendages modified for different functions; head for senses (antennae) and feeding; thorax for locomotion; abdomen for reproduction.
18
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla e. Phylum Hexapoda 1. Diversity - Collembola
19
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla e. Phylum Hexapoda 1. Diversity - Collembola - Protura
20
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla e. Phylum Hexapoda 1. Diversity - Collembola - Protura - Insecta
21
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla e. Phylum Hexapoda 2. Biology - spiracles
22
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla e. Phylum Hexapoda 2. Biology - spiracles - Fusion of segments into three regions: head, thorax, abdomen
23
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla e. Phylum Hexapoda 2. Biology - spiracles - Fusion of segments into three regions: head, thorax, abdomen - Flight in insects
24
II. Animal Diversity b. Ecdysozoans 3. Arthropod Phyla e. Phylum Hexapoda 3. Why are there SO MANY insect species?? - flight: high powers of dispersal - small: so they are unlikely to get back to the same place the left. - tough: exoskeleton resists desiccation - fecund: have lots of offspring increase probability of geographical isolation increase probability of establishing a population
25
II. Animal Diversity C. Bilateria 1. Protostomes – blastopore forms mouth a. Lophotrochozoans b. Ecdysozoans 2. Deuterostomes – blastopore forms anus a. Echinodermata b. Hemichordata c. Chordata
27
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus a. Echinodermata 1. Diversity - sea stars
28
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus a. Echinodermata 1. Diversity - sea stars - sea cucumbers
29
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus a. Echinodermata 1. Diversity - sea stars - sea cucumbers - sea urchins
30
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus a. Echinodermata 2. Biology - “biradial symmetry”
31
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus a. Echinodermata 2. Biology - “biradial symmetry” - internal skeleton – calcified plates
32
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus a. Echinodermata 2. Biology - “biradial symmetry” - internal skeleton – calcified plates - filter feeders (Sea Lily), herbivores (sea urchins), predators (sea stars).
33
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus b. Hemichordata – Acorn Worms
34
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus b. Hemichordata – Acorn Worms - pharyngeal gill slits - hollow dorsal nerve tube
35
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters
36
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters - Pharyngeal Gill Slits
37
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters - Pharyngeal Gill Slits - Hollow Dorsal Nerve Tube
38
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters - Pharyngeal Gill Slits - Hollow Dorsal Nerve Tube - Post-anal tail
39
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters - Pharyngeal Gill Slits - Hollow Dorsal Nerve Tube - Post-anal tail - notochord – a rigid supporting rod
40
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters 1. Urochordata - Tunicates
41
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters 1. Urochordata – Tunicates - 4 traits as larva
42
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters 1. Urochordata – Tunicates - 4 traits as larva - mobile as larva
43
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters 1. Urochordata – Tunicates - 4 traits as larva - mobile as larva - become sedentary as adults (filter)
44
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters 2. Cephalochordata – Lancelets
45
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: Four Key Characters 2. Cephalochordata – Lancelets - 4 traits - burrowers - filter feeders
46
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: 3. Vertebrata
47
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: 3. Vertebrata - four traits
48
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: 3. Vertebrata - four traits - vertebral column
49
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: 3. Vertebrata - four traits - vertebral column - trends:
50
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: 3. Vertebrata - four traits - vertebral column - trends: - increased locomotion
51
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: 3. Vertebrata - four traits - vertebral column - trends: - increased locomotion - increased cephalization
52
II. Animal Diversity C. Bilateria 2. Deuterostomes – blastopore forms anus c. Chordata: 3. Vertebrata - four traits - vertebral column - trends: - increased locomotion - increased cephalization - adaptations to land
53
II. Animal Diversity 3. Vertebrata a. Origin of Vertebrates - filter feeding ancestor (lancelet-like) - 550 mya - Pikaea
54
II. Animal Diversity 3. Vertebrata a. Origin of Vertebrates
55
II. Animal Diversity 3. Vertebrata b. Jawless Fishes – (Class: Agnatha) - Early: Ostracoderms – filter feeding
56
II. Animal Diversity 3. Vertebrata b. Jawless Fishes – (Class: Agnatha) - Current: lampreys, hagfishes: parasitic
57
II. Animal Diversity 3. Vertebrata c. Jawed Fishes
58
II. Animal Diversity 3. Vertebrata c. Jawed Fishes - gill arches
59
II. Animal Diversity 3. Vertebrata c. Jawed Fishes - gill arches - evolved to jaws
60
II. Animal Diversity 3. Vertebrata c. Jawed Fishes - gill arches - evolved to jaws - increase feeding
61
II. Animal Diversity 3. Vertebrata c. Jawed Fishes - gill arches - evolved to jaws - increase feeding - priority on locomotion
62
II. Animal Diversity 3. Vertebrata c. Jawed Fishes - gill arches - evolved to jaws - increase feeding - priority on locomotion - Cephalization
63
II. Animal Diversity 3. Vertebrata c. Jawed Fishes - Placoderms(extinct – survived to Permian) dominant predators paired appendages for swimming
65
II. Animal Diversity 3. Vertebrata c. Jawed Fishes - Placoderms(extinct – survived to Permian) - Cartilaginous fish (Class: Chondrichthyes) also efficient paired fins - sharks - skates, rays - ratfish
66
II. Animal Diversity 3. Vertebrata c. Jawed Fishes - Placoderms(extinct – survived to Permian) - Cartilaginous fish (Class: Chondrichthyes) - Bony Fish (Class: Osteichthyes)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.