Download presentation
Presentation is loading. Please wait.
Published byJeffery Armstrong Modified over 9 years ago
1
K.U. K.U. & Leuven & Leuven 2 Computer Vision Labs Prof. Luc Van Gool ETH - Switzerland Un. Leuven – Belgium appr. 15 researchers Tracking Recognition Recognition Passive 3D Active 3D Hum.-comp. interact.
2
K.U. K.U. & Leuven & Leuven An overview of some vision trends scene reconstruction recognition tracking
3
K.U. K.U. & Leuven & Leuven Scene reconstruction 3D acquisition with off-the-shelf HW 4D capture: dynamic 3D Realistic texture synthesis City modelling Intuitive visualisation
4
K.U. K.U. & Leuven & Leuven One-shot ShapeCam 3D acquisition
5
K.U. K.U. & Leuven & Leuven 3D acquisition
6
K.U. K.U. & Leuven & Leuven 3D from hand-held camera images
7
K.U. K.U. & Leuven & Leuven... The result generated by ARC3D
8
K.U. K.U. & Leuven & Leuven 4D acquisition 3D snapshots in fast succession
9
K.U. K.U. & Leuven & Leuven Shape-from-silhouettes
10
K.U. K.U. & Leuven & Leuven Outdoor visual hulls
11
K.U. K.U. & Leuven & Leuven Realistic texturing Stochastic & hierarchical texture models Viewpoint/illumination dependent texture Minidome: portable photometric stereo
12
K.U. K.U. & Leuven & Leuven IKT Realistic texture Given examples Synthetic textures
13
K.U. K.U. & Leuven & Leuven AUTOMATIC Realistic texture
14
K.U. K.U. & Leuven & Leuven Recognition
15
K.U. K.U. & Leuven & Leuven Object recognition Independent of viewpoint Irrespective of occlusion In the presence of scene clutter Under variable illumination Robust against deformations Latest techniques based on `invariant regions’
16
K.U. K.U. & Leuven & Leuven The ellipses show invariant regions, they cover the same part of the scene The crux is that they were found independently Object recognition
17
K.U. K.U. & Leuven & Leuven Object recognition Example application: automatic annotation of video data E.g. finding same object somewhere else in a complete movie Searching for the van in `groundhog day’
18
K.U. K.U. & Leuven & Leuven Automatic retrieval of all scenes with the van based on the example image
19
K.U. K.U. & Leuven & Leuven Object recognition Next challenge: categorisation i.e. not recognising particular objects, but rather the class an object belongs to, e.g. a car, a person, etc. This is more difficult, because of the Intra-class variability…
20
K.U. K.U. & Leuven & Leuven Object recognition Next challenge: categorisation
21
K.U. K.U. & Leuven & Leuven Finding people Security / surveillance / annotation e.g. pedestrian detector
22
K.U. K.U. & Leuven & Leuven Tracking Robust blob tracking – anti-drift Body pose tracking Detailed hand tracking Action recognition Gait analysis
23
K.U. K.U. & Leuven & Leuven Multi-feature tracker
24
K.U. K.U. & Leuven & Leuven HandyMouse project Skin color Detection, Tracking, and Gesture analysis For Minority Report style interaction
25
K.U. K.U. & Leuven & Leuven Marker-less motion capture
26
K.U. K.U. & Leuven & Leuven Spin-offs / start-ups 1. ICOS 2. Eyetronics 3. GeoAutomation 4. eSaturnus 5. Kooaba 6. Procedural
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.