Download presentation
Presentation is loading. Please wait.
Published byBruce Russell Modified over 9 years ago
1
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia Bortko, DESY – Zeuthen ILD Meeting | IFJ PAN - Krakow | 24-26 Sep 2013
2
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 2/16 The Aim and Content
3
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 3/16 Beam Calorimeter for ILC 30 layers Tungsten absorber Diamond sensor Readout plane/air gap Graphite absorber BeamCal aimed: -Detect sHEe - Determine Beam Parameters -Masking backscattered low energetic particles Beam parameters from the ILC Technical Design Report (November 2012) - Nominal parameter set - Center-of-mass energy 1 TeV FE
4
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 4/16 BeamCal Segmentation Uniform Segmentation (US) pads size are the same Proportional Segmentation (PS) pads size are proportional to the radius Similar number of channels Y, cm
5
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 5/16 Energy Deposition due to Beamstrahlung US RMS PS Average 10 BX Figures show sum of all layers Average 10 BX
6
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 6/16 Shower from Single High Energy Electron -Showers are simulated with BeCaS (Geant4) -Investigated energies: 10, 20, 50, 100, 200, 500 GeV Shower from 100- GeV electron Maximum in 10 th layer (average over 10 showers) Longitudinal shower profile
7
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 7/16 Proportional Segmentation Uniform Segmentation The average energy in the pad of the core of shower RMS of the averaged Background Signal and RMS for both Segmentations 20 bunch crossings were given Signal nearly segmentation- independent! Different distributions! Proportional Segmentation
8
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 8/16 SNR in cell with maximum _ PS US PS US
9
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 9/16 Efficiency of Showers Reconstruction PS US Radius, cm PS US
10
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 10/16 Charge Range Estimate Diamond PS US PS US Distribution of the collected charge per pad from Background for Diamond Distribution of the collected charge per pad from 500Gev electron for Diamond Showers Background DiamondGaAs Charge collected from MIP2.44 fC4.29 fC Maximum collected charge from 500GeV electron 12 214 fC21 497 fC Correspond to about 5 000 MIPs For sensor pad thickness 300 µm:
11
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 11/16 Deposited Energy vs Energy of Electron Energy deposition (GeV) Number of events y = 0,017x + 0,0051
12
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 12/16 Energy Resolution vs Energy of Electron Energy Resolution Energy of Electron (GeV)
13
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 13/16 Spatial Resolution ( In Process) Estimation PS US COG 0 4 5 2 1 3 6 x y
14
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 14/16 Spatial Resolution ( In Process) Corrected COG Energy of Electron Gaussian fit 0 ∆R Parameters
15
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 15/16 Conclusion
16
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 16/16 Thank you for your attention!
17
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 17/16 Backup slides
18
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 18/16 Layer 7 Layer 11 Shower maximum – Layer 9 PS US PS US PS US SNR for 50 GeV Electron
19
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 19/16 Layer 6 Layer 10 Shower maximum – Layer 8 PS US PS US PS US SNR for 20 GeV Electron
20
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 20/16 Layer 5 Layer 9 SNR for 10 GeV Electron PS US PS US PS US Shower maximum – Layer 7
21
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 21/16 Charge range estimate For Diamond sensor pad thickness 300 µm: - Charge collected from MIP: 2.44 fC - Maximum charge collected – for shower from 500 GeV electron: 12214 fC (correspond to about 5000 MIPs) DiamondGaAs Distribution of the collected charge per pad for 500Gev electron showers
22
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 22/16 Diamond GaAs Blue – Uniform Segmentation Orange - Proportional Green – Uniform Segmentation Blue - Proportional Distribution of the collected charge per pad for 500Gev electron showers
23
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 23/16 Efficiency of Showers Reconstruction Efficiency for 50 GeV PS US
24
Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 24/16 Proportional Segmentation Uniform Segmentation The average energy in the pad of the core of shower RMS of the averaged Background Uniform Segmentation Signal and RMS for both Segmentations 20 bunch crossings were given Signal nearly segmentation- independent! Different distributions! Proportional Segmentation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.