Download presentation
Presentation is loading. Please wait.
Published byMagdalene Russell Modified over 9 years ago
1
Phase diagram and density large deviation of a nonconserving ABC model Or Cohen and David Mukamel International Workshop on Applied Probability, Jerusalem, 2012
2
T2T2 Driven diffusive systems T1T1 Boundary driven Bulk driven Studied via simplified
3
Motivation What is the effect of bulk nonconserving dynamics on bulk driven system ? pq w-w- w+w+ Can it be inferred from the conserving steady state properties ?
4
Outline 1.ABC model 2.Phase diagram under conserving dynamics 3.Slow nonconserving dynamic 4.Phase diagram and inequivalence of ensembles 5.Conclusions
5
ABC model A BC AB BA BC CB CA AC Dynamics : q 1 q 1 q 1 Ring of size L Evans, Kafri, Koduvely & Mukamel - Phys. Rev. Lett. 1998
6
ABC model A BC AB BA BC CB CA AC Dynamics : q 1 q 1 q 1 Ring of size L q=1 q<1 Evans, Kafri, Koduvely & Mukamel - Phys. Rev. Lett. 1998 ABBCACCBACABACB AAAAABBBBBCCCCC
7
ABC model Evans, Kafri, Koduvely & Mukamel - Phys. Rev. Lett. 1998 t x A BC
8
Equal densities For equal densities N A =N B =N C AAAAABBAABBBCBBCCCCCC BB BBB BB Potential induced by other species
9
Weak asymmetry Clincy, Derrida & Evans - Phys. Rev. E 2003 Coarse graining
10
Weak asymmetry Clincy, Derrida & Evans - Phys. Rev. E 2003 Weakly asymmetric thermodynamic limit Coarse graining
11
Phase transition Clincy, Derrida & Evans - Phys. Rev. E 2003 For low β is minimum of F[ρ α ]
12
Phase transition 2 nd order phase transition at Clincy, Derrida & Evans - Phys. Rev. E 2003 For low β is minimum of F[ρ α ]
13
Nonequal densities ? AAAAABBAABBBCBBCCC No detailed balance (Kolmogorov criterion violated) Steady state current Stationary measure unknown
14
Nonequal densities ? Hydrodynamics equations : Drift Diffusion AAAAABBAABBBCBBCCC No detailed balance (Kolmogorov criterion violated) Steady state current Stationary measure unknown
15
Nonequal densities ? Hydrodynamics equations : Drift Diffusion Full steady-state solution or Expansion around homogenous AAAAABBAABBBCBBCCC No detailed balance (Kolmogorov criterion violated) Steady state current Stationary measure unknown
16
Nonconserving ABC model 0X X0 X=A,B,C 1 1 AB C0 Lederhendler & Mukamel - Phys. Rev. Lett. 2010 AB BA BC CB CA AC q 1 q 1 q 1 1 2 12 Conserving model (canonical ensemble) +
17
Nonconserving ABC model 0X X0 X=A,B,C 1 1 AB C0 Lederhendler & Mukamel - Phys. Rev. Lett. 2010 AB BA BC CB CA AC q 1 q 1 q 1 ABC 000 pe -3βμ p 1 2 3 12 123 Conserving model (canonical ensemble) Nonconserving model (grand canonical ensemble) + ++
18
Nonequal densities Hydrodynamics equations : Drift Diffusion Deposition Evaporation
19
Nonequal densities ABC 000 pe -3βμ p 0X X0 1 1 AB BA e -β/L 1 BC CB e -β/L 1 CA AC e -β/L 1 X= A,B,C Hydrodynamics equations : Drift Diffusion Deposition Evaporation
20
Conserving steady-state Conserving model Steady-state profile Drift Diffusion Nonequal densities : Cohen & Mukamel - Phys. Rev. Lett. 2012 Equal densities : Ayyer et al. - J. Stat. Phys. 2009 Nonequal densities : Cohen & Mukamel - Phys. Rev. Lett. 2012 Equal densities : Ayyer et al. - J. Stat. Phys. 2009
21
Nonconserving steady-state Drift Diffusion Deposition Evaporation
22
Nonconserving steady-state Nonconserving model with slow nonconserving dynamics Drift + Diffusion Deposition + Evaporation
23
Dynamics of particle density
24
After time τ 1 :
25
Dynamics of particle density After time τ 2 :
26
Dynamics of particle density After time τ 1 :
27
Dynamics of particle density After time τ 2 :
28
Dynamics of particle density After time τ 1 :
29
Large deviation function of r After time τ 1 :
30
Large deviation function of r = 1D - Random walk in a potential
31
Large deviation function of r = 1D - Random walk in a potential ABC 000 pe -3βμ p Large deviation function
32
Large deviation function of r High µ
33
Large deviation function of r High µ Low µ First order phase transition (only in the nonconserving model)
34
Inequivalence of ensembles Conserving = Canonical Nonconserving = Grand canonical 2 nd order transition ordered 1 st order transitiontricritical point disordered ordered disordered For N A =N B ≠N C :
35
Conclusions 1.ABC model 2.Slow nonconserving dynamics 3.Inequivalence of ensemble, and links to long range interacting systems. 4.Relevance to other driven diffusive systems.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.