Download presentation
Presentation is loading. Please wait.
Published byConrad Wiggins Modified over 8 years ago
1
Supercritical CO 2 for Green Polymer Chemistry by Silvio Curia International Conference on Biopolymers and Bioplastics 10 August 2015, San Francisco
2
REFINE project: REnewable FunctIoNal matErials for a sustainable polymer industry Plastic industry is heavily reliant on petrochemicals. REFINE aims to combine: green raw materials green synthesis green processing and modification
3
Plastics: the facts (2014) Plastics – the Facts 2014, PlasticsEurope and European Plastics Converters, 2014 57 Mtonnes in EU 300 Mtonnes globally
4
Plastics: the facts (2014) Plastics – the Facts 2014, PlasticsEurope and European Plastics Converters, 2014 <10% derived from biodegradable polymers 1 [1] C. Rolando, Biodegradation – Life of Science, 2013
5
CO 2 for polymer chemistry Reduce the viscosity Energy saving New green routes
6
Polymer processing & synthesis: high viscosity problem Major obstacle High Viscosity!
7
Major obstacle High Viscosity! Solutions Solvents ✗ Toxic Polymer processing & synthesis: high viscosity problem
8
Major obstacle High Viscosity! Solutions Solvents High T ✗ ✗ Toxic Thermal degradation + expensive Polymer processing & synthesis: high viscosity problem
9
Major obstacle High Viscosity! scCO 2 ✓ Temporary plasticiser Non-toxic Inexpensive Accessible T c & p c Solutions Polymer processing & synthesis: high viscosity problem
10
CO 2 -induced polymer plasticisation - how does it work? Polymer chains
11
scCO 2 Polymer chainsCO 2 molecule Lower viscosity Lower melting point CO 2 -induced polymer plasticisation - how does it work?
12
Poly(lactic acid) at 35 o C
13
High Pressure Rheometer Max Pressure: 300 bar
14
Oscillatory vs rotational experiments Oscillation Full rotation Stiffness Melting point Shear-Viscosity Flow properties Polymer
15
Elastic modulus of PCL – ambient pressure P amb S. Curia et al., Polymer, 2015 Semi-crystalline Biodegradable Used for packaging Suitable for medical applications
16
P amb Soaking time 50 mins 50 bar Elastic modulus of PCL – in CO 2 S. Curia et al., Polymer, 2015
17
100 bar 120 bar 70 bar 50 bar P amb Soaking time 50 mins ∼ 23 o C Elastic modulus of PCL – in CO 2 S. Curia et al., Polymer, 2015
18
Viscosity of PCL 10 kDa: ambient pressure 80 o C S. Curia et al., Polymer, 2015
19
PRESSUREPRESSURE Viscosity reduction under CO 2 : PCL 10 kDa 80 o C S. Curia et al., Polymer, 2015
20
PRESSUREPRESSURE Viscosity reduction under CO 2 : PCL 10 kDa 80 o C 96% S. Curia et al., Polymer, 2015
21
Q: can CO 2 plasticise higher MW PCL?
22
Viscosity: PCL 80 kDa vs 10 kDa 10 kDa (ambient pressure) 80 o C Shear Rate (s -1 ) Viscosity (Pa.s) Longer chains = higher viscosity S. Curia et al., Polymer, 2015
23
Polymers: non-Newtonian fluids log Shear Rate log Viscosity Zero Shear Viscosity
24
80 °C Viscosity of PCL 80 kDa: ambient pressure Shear Rate (s -1 ) Viscosity (Pa.s) S. Curia et al., Polymer, 2015
25
PRESSUREPRESSURE Viscosity reduction under CO 2 : PCL 80 kDa Shear Rate (s -1 ) Viscosity (Pa.s) S. Curia et al., Polymer, 2015, in press
26
PRESSUREPRESSURE Viscosity reduction under CO 2 : PCL 80 kDa 80 o C 95% Shear Rate (s -1 ) Viscosity (Pa.s) S. Curia et al., Polymer, 2015
27
Viscosity vs pressure 80 o C Pressure (bar) Zero Shear Viscosity (Pa.s) PCL80 CO 2 Q: can we use another gas? S. Curia et al., Polymer, 2015
28
80 o C Pressure (bar) Zero Shear Viscosity (Pa.s) PCL80 CO 2 vs N 2 N2N2 CO 2 S. Curia et al., Polymer, 2015
29
CO 2 vs N 2 80 o C Pressure (bar) Zero Shear Viscosity (Pa.s) S. Curia et al., Polymer, 2015
30
Viscosity of PCL vs T 80 o C 1/Temperature (1/K) 180 o C Without CO 2 S. Curia et al., Polymer, 2015 Zero Shear Viscosity (Pa.s)
31
Viscosity of PCL vs T 180 o C 80 kDa 80 o C CO 2 300 bar 10 kDa 80 o C CO 2 300 bar 80 o C 1/Temperature (1/K) Zero Shear Viscosity (Pa.s) 300 bar at 80 o C in CO 2 = 250 o C without CO 2 ! S. Curia et al., Polymer, 2015
32
Fossil-based resources Green resources Monomers High T Organic solvents Toxic catalysts Polyesters Low T No solvents Enzyme catalysed
33
Oleic acid Barley, rye, wheat Azelaic acid Extraction Ozonolysis Bio-derived ✓ Non-harmful ✓
34
Polymerisation of azelaic acid T>200 o C Metal catalysts
35
Oleic acid Barley, rye, wheat Azelaic acid Extraction Ozonolysis T m ≈110 o C ✗ Insoluble in apolar solvents ✗
36
Polymerisation of azelaic acid Can a green lower T approach be achieved in CO 2 ?
37
\ CO 2 inCO 2 out Mechanical stirrer HP reaction vessel (60 mL or 20 mL base)
38
Naturally derived 100% bio-content Low T: Save €€€/£££ Preserve enzyme Preserve functionalities Green Route to Green Functional Materials S. Curia et al., Phil Trans A, 2015, accepted Lipase Molecular sieves
39
End-capped ✓ MW ✓ No side reactions ✓ Sorbic alcohol end-capping: NMR 3 S. Curia et al., Phil Trans A, 2015, accepted
40
m/z Intensity (a.u. x 10 4 ) 270.4 g/mol Sorbic alcohol end-capping: MALDI-ToF S. Curia et al., Phil Trans A, 2015, accepted
41
m/z Intensity (a.u. x 10 4 ) A= B= A3A3 A4A4 A5A5 A6A6 A7A7 A8A8 B4B4 Sorbic alcohol end-capping: MALDI-ToF S. Curia et al., Phil Trans A, 2015, accepted
42
Further reaction: Diels Alder chain extension + Chain extended interpenetrated network DA RT, 24 h 2n n DA Swollen in CHCl 3
43
Thermal analysis 40 °C 25 °C Before curing After curing Heat Flow (endo down) Decreased crystallinity
44
Enzyme recycling: propyl oleate synthesis 1.Fresh enzyme 2.Enzyme used at 35 o C/275 bar (CO 2 ) 3.Enzyme used at 110 o C (melt synthesis)
45
Enzyme recycling: propyl oleate synthesis Fresh S. Curia et al., Phil Trans A, 2015, accepted
46
Enzyme recycling: propyl oleate synthesis Fresh CO 2 (35 o C, 275 bar) S. Curia et al., Phil Trans A, 2015, accepted
47
Enzyme recycling: propyl oleate synthesis Fresh CO 2 (35 o C, 275 bar) Melt process (110 o C) S. Curia et al., Phil Trans A, 2015, accepted
48
Conclusions CO 2 is able to plasticise PCL with varied MW Used CO 2 as a reaction medium to achieve a green low T route to functional materials Recycling tests showed that the high-pressure reactions are commercially sustainable
49
Next Steps Test cross-linking of the green functional polymers (DSC, DMA) + efficiency test (real time FTIR etc.) (collaboration with KTH) S. Torron et al., Macromol Phys and Chem, 2014
50
Next Steps & future outlook Radical chain extension of telechelic A-B-A block copolymer synthesis + analysis Hydrophilic Hydrophobic Micelle? Hydrogel? Drug delivery?
51
Acknowledgments: Prof Steven M Howdle and Dr Derek J Irvine KTH people: Prof Karl Hult, Prof Mats Johansson, Prof Mats Martinelle, Susana Timhagen, Stefan Semlitsch Mark Guyler, Pete Fields and Richard Wilson Helen Carson EU, 7 th FP and MC actions for funding
52
Thank you! … any questions?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.