Download presentation
Presentation is loading. Please wait.
Published byDennis Gray Modified over 9 years ago
1
Half-Skyrmion Matter & Quarkionic Matter HIM-WCU workshop Hanyang U. Oct. 31, 2009 Byung-Yoon Park (Chungnam Nat’l Univ.)
2
Collaborators M. Rho(Saclay, Hanyang Univ.) V. Vento(Valencia Univ.) D.-P. Min(Seoul National Univ.) H.-J. Lee(Chungbuk National Univ.)
3
Contents 1.Skyrme Model ? 2. Dense Skyrmion Matter 3. Dense & Hot Skyrmion Matter 4. Summary
4
1. Skyrme Model?
5
Skyrmion Model U(x) : mapping from R 3 -{ }=S 3 to SU(2)=S 3 8 topological soliton 1960, T. H. R. Skyrme R ~ 1 f m M ~ 1.5 GeV BARYON ?
6
protonneutron 1919 Rutherford 1932 Chadwick pion protonneutron 1935 Yukawa Hadronic World (Skyrmionist’s Viewpoint) pion 1960 Skyrme
7
SU(2) Collective Coord. Quantization N, SU(3) collective Coordinate Quatization , *
8
, * Hedgehog Soliton SU(2) collective Coordinate Quatization bound kaon
9
c , * * c Hedgehog Soliton SU(2) collective Coordinate Quatization bound D,D* c c
10
Multi-Skyrmion system B=2 Torus B=3 Tetrahedron B=4 Cube B=5 with D d2 sym B=6 with D d4 sym B=7 Dodecahedron
11
Toroidal B=2 skyrmion 1988, Braaten & Carson, 1995, Leese, Manton & Schroers
12
2. Dense Skyrmion Matter
13
2. Dense Skyrmion matter
14
Two skyrmions in the most attractive configuration. 2. Dense Skyrmion matter
15
1985, I. Klebanov (E/B) min =1.078 at L C =5.56 Simple Cubic Skyrmion Crystal U(x+L C,y,z) = y U(x,y,z) y y Y z xz x x x X y LCLC o 2. Dense Skyrmion matter
16
Half-Skyrmion Crystal U(x+L C,y,z) = y U(x,y,z) y 1987, A. S. Goldhaber & N. S. Manton + additional Symmetry w.r.t. - (E/B) min =1.076 at L C =5.56 y zx X LCLC =-1 =+1 (L b /2 above) 0 2. Dense Skyrmion matter
17
U = exp(i F(r) r ) ^. Half-skyrmion? F (r )F (r ) r U =-1 2. Dense Skyrmion matter
18
U =-1 U =+1 2. Dense Skyrmion matter
19
U =-1 U =+1 2. Dense Skyrmion matter
20
B=4 skyrmion 2. Dense Skyrmion matter
21
1989, L. Castellejo et al. & M. Kulger et al. y Y x x X y z=L F /2 plane Y o z z z X z LFLF z=0 plane FCC Skyrmion Crystal 2. Dense Skyrmion matter
22
Y X (E/B) min =1.038 at L f =4.72 o z Y z z X z LFLF y x x y Half-Skyrmion CC 2. Dense Skyrmion matter
23
E/B vs. L F 2. Dense Skyrmion matter
24
= Chiral symmetry restoration in dense matter? 2. Dense Skyrmion matter
25
static soliton config. fluctuating pions Pion in the dense baryonic matter? classical dense matter config. 2. Dense Skyrmion matter
26
Skyrme Model ( m =0 ) \ Pion fluctuation in B =0 space Vacuum : U=1 2. Dense Skyrmion matter
27
dynamics ( =0) \ + - skyrmion matter interactions Skyrmion matter Pion fluctuations on top of the skyrmion matter 2. Dense Skyrmion matter
28
dynamics ( =0) \ 2. Dense Skyrmion matter
29
dynamics ( =0) \ 2. Dense Skyrmion matter
30
dynamics ( =0) \ In-Medium pion decay constant ? In-Medium pion mass ? 2. Dense Skyrmion matter
31
pion effective mass H.-J. Lee, B.-Y. Park, D.-P. Min, M. Rho, V. Vento, Nucl. Phys. A (2003) ! 2. Dense Skyrmion matter
32
ff Pseudogap? Zarembo, hep-ph/0104305 U still remains on the Chiral Circle But =0 Chiral Symmetry Restoration 2. Dense Skyrmion matter
33
Skyrme Lagrangian Trace Anomaly of QCD 2. Dense Skyrmion matter
34
Skyrme Lagrangian Ellis & Lanik, PLB(1985) Brown-Rho scaling, PRL(1992) m ~ 720 MeV, f ~240 MeV 2. Dense Skyrmion matter
35
ff V Vacuum ( =0) U=1 =f ff <><> U U 2. Dense Skyrmion matter
36
Naive Estimation E/B=M 2 (L) 2 +M 4 (L) +M m (L) 3 +V( )L 3 2. Dense Skyrmion matter
37
Naive Estimation 2. Dense Skyrmion matter
38
E/B =0 phase Chiral phase transition =0 phase / 2. Dense Skyrmion matter
39
& <><> <><> Pseudogap Phase? S Phase SB Phase m =0 2. Dense Skyrmion matter
40
Pseudogap still remains? ff ff * * SB Phase Pseudogap Phase S Phase 2. Dense Skyrmion matter
41
3. Hot & Dense Skyrmion Matter
42
? 2. Hot & Dense Skyrmion matter
43
Skyrmion Soup Condiments : dilaton vector mesons Heat Main ingredients : pions B.-Y. Park, H.-J. Lee, V. Vento, Phys. Rev. D80 (2009) 2. Hot & Dense Skyrme matter
44
Skyrmion from Instanton 1989, M. F. Atiyah & N. S. Manton time component of SU(2) gauge potential for the instanton field of charge N time-ordering constant matrix to make U approaches 1 at infinity constant rotation matrix 2. Hot & Dense Skyrmion matter
45
E/B vs. L F 2. Hot & Dense Skyrmion matter
46
B.-Y. Park, D.-P. Min, V. Vento & M. Rho, Nucl. Phys. A707(2002) 381 2. Hot & Dense Skyrmion matter
47
B.-Y. Park, D.-P. Min, V. Vento & M. Rho, Nucl. Phys. A707(2002) 381 2. Hot & Dense Skyrmion matter
49
Pion Gas! P = T 4 2 30 E/B = 3PV E/B=(M 2 ( )+3PV) 2 +M 4 ( ) +V( )/ 1/3 2. Hot & Dense Skyrmion matter
50
Conclusion 2. Hot & Dense Skyrmion matter
51
Summary Skyrme Model can be applied to study (1) dense hadronic matter (2) hadron properties in dense matter 4. Summary
52
Thank You!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.