Presentation is loading. Please wait.

Presentation is loading. Please wait.

Top pair resonance searches with the ATLAS detector 钟家杭 University of Oxford Frontier Physics Working Month.

Similar presentations


Presentation on theme: "Top pair resonance searches with the ATLAS detector 钟家杭 University of Oxford Frontier Physics Working Month."— Presentation transcript:

1 Top pair resonance searches with the ATLAS detector 钟家杭 University of Oxford Jiahang.Zhong@cern.ch Frontier Physics Working Month

2 Outline 31 Aug 2012jiahang.zhong@cern.ch1  Background information  Top reconstruction  Top pair resonance searches  Boosted tops

3 Top quark 31 Aug 2012jiahang.zhong@cern.ch2  Spin=1/2, charge=2/3  The heaviest known quark  m(t)=173.2±0.9 GeV (Tevatron)  Lifetime ~ 5x10 -25 s  Decay before hadronization  Almost exclusively via t -> W + b

4 The energy frontier at TeV 31 Aug 2012jiahang.zhong@cern.ch3

5 Beyond the Standard Model 31 Aug 2012jiahang.zhong@cern.ch4  Two benchmark BSM models used in experiments  Z’ in a leptophobic topcolor model Proxy to narrow resonance: Γ/m=1.2%  Kaluza-Klein gluon (KKG) in Randall-Sundrum extra dimension models Proxy to broad resonance: Γ/m=15.3%  Generic search, applicable to other BSM models  Spin-0 Lee-Wick Higgs  Spin-2 KK graviton  … KKG branching ratio Phys. Rev. D 77 (2008) 015003

6 The ATLAS detector 31 Aug 2012jiahang.zhong@cern.ch5

7 Leptons in ATLAS 31 Aug 2012jiahang.zhong@cern.ch6  Only prompt leptons are considered signal  Electron: Energy cluster of high EM fraction, matching to a track  Muons: Combined tracking in both Inner Tracker and Muon Chambers  Fixed-cone isolation to suppress QCD contribution  Mostly real leptons from heavy-flavor quark  Both calo-based and track-based  Hadronic tau channel not included

8 Jets in ATLAS 31 Aug 2012jiahang.zhong@cern.ch7  Sequential clustering algorithms : Kt, C/A, anti-Kt  AntiKt as the mainstream jet algorithm  R=0.4 as the standard jet  R=1.0 known as the fat jet (boosted hadronic top jet)  C/A algorithm with R=1.5 used for HEPTopTagger  B-tagging  For antiKt4 jets  Using tracks associated with the jet  Secondary vertices  Impact parameter  Multivariate algorithms, 70% efficiency

9 Leptonic top reconstruction 31 Aug 2012jiahang.zhong@cern.ch8  t -> W + b -> l+v+b  One Lepton  High missing transverse energy (MET)  High transverse mass MT between lepton and MET (due to W mass)  One b-tagged antiKt4 jet.  Neutrino reconstruction  Assuming MET fully from neutrino, solve p z (v) using W-mass  Under-constrained in di-lepton channel

10 Hadronic top reconstruction 31 Aug 2012jiahang.zhong@cern.ch9  t -> W + b -> q+q+b  Resolved:  3 antiKt4 jets  2 antiKt4 jets, if one has high mass.  Boosted:  One energetic antiKt10 jet with substructure cuts  One energetic C/A1.5 jet using HEPTopTagger  Discrimination against QCD Boost

11 Hadronic top reconstruction 31 Aug 2012jiahang.zhong@cern.ch10 m t /2 mtmt

12 Top pair resonance search 31 Aug 2012jiahang.zhong@cern.ch11 2 fb -1, arXiv:1207.2409 2 fb -1, EPJC72 (2012) 2083 5 fb -1, ATLAS-CONF-2012-102

13 Single Lepton Boosted ttbar 31 Aug 2012jiahang.zhong@cern.ch12  Single lepton trigger  Exactly one offline lepton  Electron p T > 25 GeV  Muon p T > 20 GeV  E T miss >35GeV, M T >25GeV  Solve neutrino p z with W mass constraint  Closest antiKt4 jet as from the leptonic top  p T > 30 GeV  0.4 < ΔR(lepton, jet) <1.5 Signal selection efficiency

14 Single Lepton Boosted ttbar 31 Aug 2012jiahang.zhong@cern.ch13 M=2.5 TeV

15 Single Lepton Boosted ttbar 31 Aug 2012jiahang.zhong@cern.ch14  tt= l + v + akt4 + akt10 (4-vector sum) Leptonic top mass (l + v + akt4) Hadronic top mass (fat jet)

16 Single Lepton Boosted ttbar 31 Aug 2012jiahang.zhong@cern.ch15  W+jets background  Data-driven normalization  Multijets  Fully data-driven Can be further improved by b-tagging

17 Single Lepton Boosted ttbar 31 Aug 2012jiahang.zhong@cern.ch16

18 Single Lepton Boosted ttbar 31 Aug 2012jiahang.zhong@cern.ch17  Search for local data excess with BumpHunter  Set 95% CL upper limits on xsec Replace the theoretical line with your favorite model

19 Top pair resonance search 31 Aug 2012jiahang.zhong@cern.ch18 Di-lepton One-lepton (Resolved) One-lepton (Boosted) Fully hadronic Integrated luminosity 2 fb -1 4.7 fb -1 Z’ limits-0.5 – 0.88 TeV0.6 – 1.15 TeV0.7 – 1.3 TeV KKG limits0.5 – 1.08 TeV0.5 – 1.13 TeV0.6 – 1.5 TeV0.7 – 1.5 TeV More results are coming…

20 Boosted Top 31 Aug 2012jiahang.zhong@cern.ch19  New challenge: TeV frontier  Top decay products are more collimated ΔR ~ m/P

21 Boosted Top: Leptonic 31 Aug 2012jiahang.zhong@cern.ch20  Lepton collinear with the b-quark  Signal acceptance suffers from the fixed-cone isolation cuts Signal selection efficiency

22 Boosted Top: Leptonic 31 Aug 2012jiahang.zhong@cern.ch21  Mini-isolation  Variable-cone size ΔR=K T /p T  Parameter K T, e.g. 15 GeV  Lepton p T (easier than top p T )  Sum up tracks pt within the cone  Sufficient angular resolution JHEP 1103:059 (2011) b-jet lepton Isolation cut Boost, dR=m top /E top Fixed-cone isolation Mini-isolation

23 Boosted Top: Hadronic 31 Aug 2012jiahang.zhong@cern.ch22  Three jets tend to overlap.  Use single jet with large radius  Need rejection against QCD => Substructure variable  Need to get rid of soft component from underlying event and pileup => Jet Grooming  Not limited to top decay Boost

24 Boosted Top: Jet grooming 31 Aug 2012jiahang.zhong@cern.ch23  Algorithms to reduce soft components from UE and PU  Jet kinematics more close to the constituents of hard scattering  Better resolution/discrimination of the substructure variables I. Mass drop/filtering II. Trimming III. Pruning

25 Boosted Top: Jet grooming 31 Aug 2012jiahang.zhong@cern.ch24 Mass drop/filtering  Works on C/A jet  More optimized for two-body hadronic decay  W/Z -> qq, H -> bb Phys.Rev.Lett.100:242001 (2008) (J. Butterworth, A. Davidson, M. Rubin, G. Salam) Mass drop Filtering

26 Boosted Top: Jet grooming 31 Aug 2012jiahang.zhong@cern.ch25 Trimming  Use jet constituents to build Kt subjets (e.g. R=0.2)  Remove soft subjets  Applicable to any jet, any physics scenario JHEP 1002:084 (2010) (D. Krohn, J. Thaler, L. Wang)

27 Boosted Top: Jet grooming 31 Aug 2012jiahang.zhong@cern.ch26 Pruning  Recluster jet constituents with C/A or Kt algorithm (no need of subjets)  Veto wide angle and soft constituents during jet formation arXiv:0912.0033 (2009) (S. Ellis, C. Vermilion, J. Walsh)

28 Boosted Top: Jet grooming 31 Aug 2012jiahang.zhong@cern.ch27  Reduce unnecessary catchment area antiKt R=1.0 (ungroomed)antiKt R=1.0 (trimmed)

29 Boosted Top: Substructure 31 Aug 2012jiahang.zhong@cern.ch28  Jet mass are more discriminating after trimming

30 Boosted Top: Substructure 31 Aug 2012jiahang.zhong@cern.ch29

31 Boosted Top: Substructure 31 Aug 2012jiahang.zhong@cern.ch30  N-subjettiness ( τ N )  Re-clustering with Kt algorithm until exactly N subjets are formed   Smaller τ N+1 /τ N => Structure described better with additional sujet

32 Boosted Top: HEPTopTagger 31 Aug 2012jiahang.zhong@cern.ch31  A multi-step algorithm starting from a large-R C/A jet  Grooming: filter out soft component  Form up subjets  Impose Top and W mass constraints JHEP 1010:078 (2010) ATLAS-CONF-2012-065

33 Summary 31 Aug 2012jiahang.zhong@cern.ch32  ttbar resonance are searched in all channels at ATLAS  Unfortunately, we don’t have the luck yet…  Systematics still have large impact on the sensitivity  Uncertainty of performance at high pt  Understanding realistic performance of new techniques  Rooms to improve…  New techniques for new challenges  Boosted top/object  Increased luminosity


Download ppt "Top pair resonance searches with the ATLAS detector 钟家杭 University of Oxford Frontier Physics Working Month."

Similar presentations


Ads by Google