Download presentation
Presentation is loading. Please wait.
Published byDale Webster Modified over 9 years ago
1
Spontaneous Emission between ortho and para- levels of Water-Ion, H 2 O + Keiichi TANAKA K.Harada, S.Nanbu T.Oka MG06, Ohio, 2012 Herschel Space Telescope 2009 FIRST ( F ar I nfra r ed and S ubmillimeter T elescope)
2
HIFI ( H eterodyne I nstrument for the F ar I nfrared) 480~1249, 1414~1909 GHz Bands / = 10 7 1 11 -0 00 1 10 o 1 01 o 0 00 p 1 11 p 1015 GHz 557 H2OH2O 1A11A1 O + H 3 + → OH + → H 2 O + → H 3 O + + e - → H 2 O +H 2
3
Galactic Center : Sgr B2(M) 1 10 p 1 01 p 0 00 o 1 11 o 1115 GHz 607 H2O+H2O+ 2B12B1 ortho/para = 4.8 ± 0.5 3.0/1.0 → 3.3/0.7 = 4.7 (high T) T e = 21 K T r =2.7 K H2O+H2O+ H3+H3+ ortho para 0 100 200-100 -200km/s SgrB2(M) O + H 3 + → OH + → H 2 O + → H 3 O + + e - → H 2 O +H 2 A&A 518 L111 (2010)) para → ortho Conversion (~1/3)
4
para eo,oe ortho ee,oo H2O+H2O+ FarIR-LMR 1993: Saykally 1998: Evenson K c : o/e +/- b O H1H1 H2H2 a c 2B12B1
5
T ab1 = T ab2 T ab S a (I 1b - I 2b ) I = 1 Electron spin-Nuclear spin Magnetic Interaction of H 2 O + ortho-para conversion off-diagonal interaction O H1H1 H2H2 SaSa T ab = T ba H op = T ab (S a I b + S b I a ) I = I 1 – I 2 I 1b I 2b 2B12B1
6
T bb1 = T bb2 H hf = T bb S b (I 1b + I 2b ) I = (I 1 + I 2 ) Electron spin-Nuclear spin Magnetic Interaction of H 2 O + O H1H1 H2H2 diagonal SbSb I 1b I 2b I = 0
7
EE 1/ = A ∞ 3 if 2 b = 2.37 D ~ 1 – 60 sec 1/ = A ∞ 3 if 2 b = 2.37 D ~ 1 – 60 sec ortho para Spontaneous Emission ~ 1min + + - - ’’ ’’ Ortho-para Spontaneous Emission of H 2 O + o-p Emission Life Time ’ = 2 ' = ortho + a para = / E ortho-para interaction Accidental degeneracy E o-p Emission Life Time ’ = 2 ' = ortho + a para = / E ortho-para interaction Accidental degeneracy E N’ N N T r = 2.7 K
8
T ab T aa T bb 38.9 MHz obs. 0 -50 MHz -17.9 obs. 72.0 MHz calc. 12060 50 Closed shell as H 2 O C ab (J a I b + J b I a ) C ab ~ 10 kHz (C ab /T ab ) 2 ~ 10 7~8 Mol. Phys. 80 1485 (1993) MRD-CI/BK H2O+H2O+ O H1H1 H2H2 SbSb Open shell : H 2 O + T ab = 72.0 MHz E ~ 30 GHz ~ 10 3~4 ’ ~ 1~100 year ~ Cosmic Life Time 2B12B1 ?
9
200 400 0 600 800 cm -1 0 0 1 1 2 3 4 5 5 4 3 2 KaKa KaKa 8 08 7 35 6 42 5 51 7 26 6 33 5 42 7 17 6 24 6 15 5 33 4 40 4 31 5 24 4 22 3 31 5 15 6 06 4 13 3 22 3 13 2 2o 2 11 2 02 0 00 1 11 4 04 6 34 7 34 6 43 5 50 7 25 8 18 7 16 5 41 6 25 6 16 5 14 5 05 7 07 5 32 5 23 4 41 4 32 4 23 4 14 3 30 3 21 3 12 3 03 2 21 2 12 1 10 1 01 ortho para O H1H1 H2H2 a c b - - EE cm -1 - - - - + + cm o-p Int. F = 0 ± ↔ ± N = 0, ± 1 K a = ± 1 - - E < 10cm -1 Channels = 1.2 x 10 -3
10
3 30 (p,-) J = F 2.5 3.5 2.5 3.5 F 4 22 (o,-) 3.5 4.5 J = 1.2 x 10 -3 = 2.7 x 10 -4 0.44 cm -1 2 cm -1 2 21 (p,+) 2.5 1.5 151 cm -1 = 0.48 s 4.4 day 53 day o-p Conversion Channel of H 2 O +
11
3 31 + ortho para o↔p 2 ~10 -5~6 o↔p 2 ~10 -5~6 OH + +H 2 →H 2 O + + T ns : high temp ? T ns : 21 K ~ min Radiative Cooling of H 2 O + cm E = cm = 1.2 x 10 -3
12
1 01 (p,+) J = F 0.5 1.5 0.5 1.5 F 1 11 (o,+) 0.5 1.5 J 16 cm -1 0.5 1.5 0.5 0 00 (o, - ) F J 0.5 = 8.1 x 10 -5 = 2.0 x 10 -5 ’ = 520 y 0.62 min = 0.93 min y o-p Conversion by A Coefficient between 1 01 and 0 00 21 cm -1
13
1.5 0.5 0 00 (o, - ) F J = 0.5 ’ = 520 y y o-p Conversion competes with the Reaction 1 01 (p,+) J = F 0.5 1.5 H 2 O + + H 2 → H 3 O + + Life time of H 2 O + ? H 2 O + + H 2 → H 3 O + + Life time of H 2 O + ? Diffuse Molecular Cloud n(H 2 +H) = 10~100/cm 3 T k = 100 K v H2 ~ 1.0 km/s = 100 Ǻ 2 If life time of H 2 O H 2 : 1/cm 3 = 30.9 y Collisions Diffuse Molecular Cloud n(H 2 +H) = 10~100/cm 3 T k = 100 K v H2 ~ 1.0 km/s = 100 Ǻ 2 If life time of H 2 O H 2 : 1/cm 3 = 30.9 y Collisions T r = 2.7 K ~ n(H 2 ) = ? /cm 3
14
SgrB2(M) FIR Source T r ~ 20K H2O+H2O+ IR IR Dust Stars Black body Rad.
15
20 40 60 0 80 100 K T 0 5 10 15 20 O-P ratio Black Body Rad. T =20 K 4.8 1.0 10 K h 1 01 p 1 00 o A B E=21 cm -1 Radiative Excitation N1N1 N2N2 3 ~ n(H 2 ) = 0.1 /cm 3 ?
16
-100 100 0 km/s 0 10 15 5 T b (K) ortho para SgrB2(M) o/p = 4.8 1.0 T < 20 K T ~100 K Strong IR Dust V 1 01 p 0 00 o 50
17
200 0 0 0 1 1 2 2 KaKa KaKa 3 22 3 13 2 2o 2 11 2 02 0 00 1 11 4 04 4 14 3 21 3 12 3 03 2 21 2 12 1 10 cm -1 - - - + + + - + - - + 100 + ortho para Radiative Excitation Process between 1 01 and 0 00 1 01 cm = 1.8 x 10 -4 T r ~100 K obs. H2O+H2O+ T r = 2.7 K IR cm cm obs.
18
Conclusions 1) Interaction of the H 2 O + ion due to off-diagonal electron spin-nuclear spin interaction term T ab (S a I b + S b I a ) has been considered. 2) There are several ortho-para conversion channels below 1000 cm -1 which cause the ortho-para mixing of 10 -3 ~ 10 -4. 3) Spontaneous emission lifetimes between 1 01 (para) and 0 00 (ortho) are calculated to be 520 and 5190 year, which may be longer than the reactive lifetime of H 2 O + with H 2. 4) IR radiation correspond to T < 20 K black body will give the ortho-para ratio of 4.8 when H 2 O + lifetime is longer than the spontaneous emission lifetime, < 2A, …...
19
4.8 H 2 O + ortho/para 1.0 -60 0 60 km/s -100 para ortho 10 12 10 13 IR: T=100K km/s SgrB2(M) column densities and o/p-ratios
22
-200 0 100 km/s -100 0 10 20 T b (K) SgrB2(M) H 2 O + (o) 1 11 -0 00 60 Calc. 1.1160 1.1150 1.1155 THz para ortho
23
Molecular symmetry : C 2v (M), G 4 (E, E*, (12), (12)*) Inversion E* : E* t ± t Parity : ± Permutation (12) : (12) t = ± t, + Boson (D) - Fermion (H) t = e v r ns (12) e v r = ± e v r a,s ; ± (12) ns = ± ns a,s ; ± ortho, para is the symmetry only for ns Molecular symmetry : C 2v (M), G 4 (E, E*, (12), (12)*) Inversion E* : E* t ± t Parity : ± Permutation (12) : (12) t = ± t, + Boson (D) - Fermion (H) t = e v r ns (12) e v r = ± e v r a,s ; ± (12) ns = ± ns a,s ; ± ortho, para is the symmetry only for ns C 2v (M) CC X1X1 X2X2 H(D). Reserved Broken !
24
200 400 0 600 800 cm -1 0 0 1 1 2 3 4 5 5 4 3 2 KaKa KaKa 8 08 7 35 6 42 5 51 7 26 6 33 5 42 7 17 6 24 6 15 5 33 4 40 4 31 5 24 4 22 3 31 5 15 6 06 4 13 3 22 3 13 2 2o 2 11 2 02 0 00 1 11 4 04 6 34 7 34 6 43 5 50 7 25 8 18 7 16 5 41 6 25 6 16 5 14 5 05 7 07 5 32 5 23 4 41 4 32 4 23 4 14 3 30 3 21 3 12 3 03 2 21 2 12 1 10 1 01 ortho para O H1H1 H2H2 a c b - - EE cm -1 - - - - + + cm o-p Int. F = 0 ± ↔ ± N = 0, ± 1 K a = ± 1 - - E < 10cm -1 Channels = 1.2 x 10 -3
25
3 30 (p,-) J = F 2.5 3.5 2.5 3.5 F 4 22 (o,-) 3.5 4.5 J = 1.2 x 10 -3 = 2.7 x 10 -4 0.44 cm -1 2 cm -1 2 21 (p,+) 2.5 1.5 151 cm -1 = 0.48 s 4.4 day 53 day o-p Conversion Channel of H 2 O +
26
3 30 (p,-) J = F 2.5 3.5 2.5 3.5 F 4 22 (o,-) 3.5 4.5 J = 1.2 x 10 -3 = 2.7 x 10 -4 2 cm -1 4 23 (p,+) 4.5 3.5 210 GHz o-p interaction of H 2 O + E = 20 kHz A Spectroscopic Determination of T ab A Spectroscopic Determination of T ab 6 kHz
27
H3+H3+ H H H Ortho I = 3/2 Para I = 1/2
28
Ortho Para H3+H3+ (3,3) (1,1) J 1 2 3 K 1 23 0 Radiative Relaxation Process of H 3 + Oka, Epp, APJ (2004) Ortho Para Ortho + HH H K = + 3 Centrifugal Distortion (2,2) T n.s. » T rot 500 K H 3 + Galactic Center R(3,3) R(1,1)
29
Ortho Para H3+H3+ (3,3) (1,1) J 1 2 3 K 1 23 0 Radiative Relaxation Process of H 3 + Oka, Epp, APJ (2004) Ortho Para Ortho + HH H K = + 3 Centrifugal Distortion (2,2) T n.s. » T rot 500 K
30
0 00 1 01 2 02 3 03 0 00 1 01 2 02 3 03 ortho 0+0+ 00 H 2 CCD 2 11 2 12 1 10 1 11 para 2 11 2 12 1 10 1 11 T = 0.8 K ortho-para Relaxation: Radiative 0+0+ 00 T n.s. ~ T rot days days T rot ~ 3K
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.