Download presentation
Published byEric Thomas Modified over 8 years ago
1
Transcription Individual DNA regions (genes) copied to mRNA
One DNA strand is template Single-stranded RNA produced mRNA template strand template strand template strand template strand
2
Transcription Overview
Un beau jour, je suis allé au marché pour acheter du pain. Il faisait chaud. Alors, j’ai acheté aussi un limonade. Il faisait chaud. 2
3
Transcription overview
What do we call this strand? Transcription overview CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG DNA gene transcription CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC mRNA
4
Transcription overview
What enzyme makes RNA? Transcription overview CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG DNA template strand transcription CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC mRNA 4
5
Transcription overview
What direction is mRNA made? Transcription overview CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG DNA template strand transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC mRNA 5
6
Transcription overview
What direction is the template strand read? Transcription overview CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG DNA template strand transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 5’ 3’ mRNA 6
7
Transcription overview
Which strand does the mRNA look like? Transcription overview CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG DNA 3’ 5’ transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 5’ 3’ mRNA 7
8
Transcription overview
How do we know where to start and stop? Transcription overview CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG DNA 3’ 5’ transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 5’ 3’ mRNA 8
9
Transcription overview
How is the RNA actually made? Transcription overview RNA polymerase synthesizes RNA 5′→ 3′ Starts at promoter, ends at terminator “upstream” “downstream” DNA +1 start codon stop codon coding region promoter terminator transcription start codon stop codon mRNA 5′ coding region 3′ 5′ UTR 3′ UTR translation NH3 COOH protein
10
Eukaryotic transcription
3 RNA polymerases: RNA polymerase I – rRNA RNA polymerase II – mRNA RNA polymerase III – tRNA RNA polymerase II from yeast
11
Eukaryotic transcription
RNAP II recognizes: TFIID bound to TATA box (TATAAA) TFIIB bound to TFIID Transcription factors bound to enhancer sequences Transcription factors TFIIB TFIID +1 Sp1 hERRa1 CAAT GATA TATA box Enhancers
12
Eukaryotic transcription
RNAP II recognizes: TFIID bound to TATA box (TATAAA) TFIIB bound to TFIID Transcription factors bound to enhancer sequences +1
13
RNA processing in eukaryotes
DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly - A tail splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA
14
5′ cap methylated guanine “backward” 5′ to 5′ linkage
Not encoded in DNA Capping enzyme Recognition by ribosome 5′ AGACCUGACCAUACC
15
RNA processing in eukaryotes
DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly - A tail splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA
16
3′ poly(A) tail Poly(A) polymerase Add ~200 A’s Not in template
mRNA stability …UGGCAGACCUGACCA 3′ …UGGCAGACCUGACCAAAAAAAAAAAAAAAAAAAA
17
RNA processing in eukaryotes
DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly - A tail splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA
18
Splicing Most genes interrupted by introns
Introns removed after transcription Exons spliced together 5’ cap AAAAAAAAA 3’ poly - A tail splicing splicing AAAAAAAAA final mRNA unbroken coding sequence
19
Splicing snRNPs recognize exon-intron boundaries RNA + protein
Cut and rejoin mRNA
20
Splicing RPE65 mRNA in nucleus: 21,000 nt (14 exons) AAAAAAAAA
mature RPE65 mRNA in nucleus: 1,700 nt (8%)
21
Splicing Alternative splicing: >1 protein from one gene
27,000 human genes, but >100,000 proteins
22
Splicing Mutations affecting splicing can cause genetic disease:
cystic fibrosis retinitis pigmentosa spinal muscular atrophy Prader-Willi syndrome Huntington disease spinocerebellar ataxia myotonic dystrophy Fragile-X syndrome Or produce genetic susceptibility to disease: lupus bipolar disorder schizophrenia myocardial infarction type I diabetes asthma cardiac hypertrophy multiple sclerosis autoimmune diseases elevated cholesterol
23
Gene expression summary
Prokaryotes Eukaryotes DNA DNA transcription transcription mRNA pre-mRNA cytoplasm nucleus capping polyadenylation splicing directly translated (even before being completely transcribed) protein mature mRNA transport to cytoplasm translation cytoplasm protein
24
Ribosome Large ribonucleoprotein structure
E. coli: 3 rRNAs, 52 proteins Two subunits: large and small large subunit RNA small subunit protein
25
Eukaryotic Translation
How does the ribosome find the correct start codon? Small ribosome subunit binds 5′ cap Scans to first AUG start codon stop codon cap mRNA 5′ coding region AAAAAAAAA… 3′ 5′ UTR 3′ UTR
26
the Genetic Code After finding start codon, use the genetic code:
Shown as mRNA 5′ → 3′ 26
27
Mechanics of Translation
Translation requires: mature mRNA ribosome tRNAs amino acids accessory proteins
28
tRNA Small RNAs (74-95 nt) made by transcription
Intramolecular base pairing Anticodon complementary to mRNA codon anticodon
29
tRNA “Charged” by specific aminoacyl tRNA synthetase
30
Initiation of Translation
Small ribosome subunit binds at start codon Prokaryotes: Shine-Dalgarno sequence (RBS) Eukaryotes: binds cap, scans mRNA 5′ AUG GAU GGG
31
Initiation of Translation
First tRNA (Met, anticodon CAU) joins complex 5' 3' Met UAC mRNA 5′ AUG GAU GGG
32
Initiation of Translation
Large ribosomal subunit joins 5' 3' Met UAC mRNA 5′ AUG GAU GGG
33
Initiation of Translation
P site holds tRNA with first aa A site open for next tRNA P A 5' 3' Met UAC mRNA 5′ AUG GAU GGG
34
Initiation of Translation
35
Elongation Next tRNA enters CUA P A UAC mRNA 5′ AUG GAU GGG Asp 3' 5'
Met UAC mRNA 5′ AUG GAU GGG
36
Elongation Peptidyl transferase forms peptide bond
Amino acid released from tRNA in P site Met Met Asp mRNA 5′ UAC 3' 5' CUA 3' 5' AUG GAU GGG
37
Elongation Ribosome translocates one codon
First tRNA binds briefly in E site until translocation completes Met Asp 5' 3' UAC mRNA 5′ CUA 3' 5' AUG GAU GGG
38
Elongation Process repeats Next tRNA can then enter the empty A site
5' 3' Gly CCC Met Asp P A mRNA 5′ CUA 3' 5' AUG GAU GGG
39
Elongation
40
Termination Ribosome stops at stop codon No matching tRNA
Release factor binds Met Val Leu Asp Gly Phe Val Lys Gly Leu Gln P A Asp Ile RF GUC 3' 5' UUG CAG UAG
41
Termination Translation complex dissociates UUG CAG UAG GUC RF Met Val
Leu Asp Gly Phe Val Lys Gly Asp Leu Gln Ile UUG CAG UAG 5' 3' GUC RF
42
Polyribosomes Next ribosome starts as soon as start codon is available
Growing polypeptide N RNA subunits released Ribosome 3' 5' AUG mRNA Stop 5' – 3' direction of ribosome movement C N Released polypeptide
43
Protein Synthesis Pathways
Free ribosomes Ribosomes bound to RER
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.