Presentation is loading. Please wait.

Presentation is loading. Please wait.

Filtering of Spam E-Mails Using Back-Propagation Neural Networks Class :資四A Professor :楊維忠 Reporter :林文仁 Team Members :江念庭 林俊宇 黃國峰.

Similar presentations


Presentation on theme: "Filtering of Spam E-Mails Using Back-Propagation Neural Networks Class :資四A Professor :楊維忠 Reporter :林文仁 Team Members :江念庭 林俊宇 黃國峰."— Presentation transcript:

1 Filtering of Spam E-Mails Using Back-Propagation Neural Networks Class :資四A Professor :楊維忠 Reporter :林文仁 Team Members :江念庭 林俊宇 黃國峰

2 Outline Neural Network Back-propagation algorithm Flow chart of research Input & output System environment Flow chart of filtering e-mail Example Conclusion

3 Neural Network Input Output Compare Adjust weights Target Neural Network connections (called weights) between neurons

4 Back-propagation algorithm—the multilayer feedforward network …… Hidden layerOutput layerInput layer Σ b 1 Σ b 1 w1w1 wiwi neuron 1 Forward pass neuron j w i : weight of i : transfer function b: bias result …… neuron 2 ……

5 Flow chart of research 參考文獻 分析 mail & maillog, 定義垃圾郵件行為 樣本訓練 類神 經網 路 與郵件伺服器相互整合 測試網路適用並結束訓練 測試網路不適用並重新訓練

6 Table of rules Headermaillog Reply-ToDatefromto Header To 61 From 17 subject 16 maillog from 22 Date 25 nrcpts 28

7 Input & output Input – 共有 28 項規則,底下提出常遇到的項目。 6 為 header-To( 收件人 ) == header-Reply-To( 收回覆信的人 ) , 則 input 第 6 項的值為 1 17 為 header-From( 寄件人 ) != maillog-from( 記錄檔裡的寄件 人 ) ,則 input 第 17 項值為 1 25 為 header-Date( 發信時間 ) 與 系統時間 差異太大,則 input 第 25 項值為 1 Output –Output value between 0.0 and 1.0

8 System environment OS –Red Hat Enterprise Linux AS 4 Mail server –Sendmail 8.13.1 Client using browser –OpenWebMail 2.52 Provide web GUI for checking mail Software tools –Matlab 7

9 Add, Change headers Milter (Mail Filter) Matlab BPN (Neural Network) Flow chart of filtering e-mail header get_value maillog Sendmail server User’s mailbox

10 Example-1 透過 telnet 傳 遞一封垃圾信 ehlo localhost Mail from: s13943013@mail.nuu.idv.tw RCPT TO: s13943013@mail.nuu.idv.tw Data From: “s” s13943013@mail.nuu.idv.tw To: s13943013@mail.nuu.idv.tw Reply-To: s13943013@mail.nuu.idv.tw Subject: 中文信 Date: +0800 …. Quit

11 Example 收到信件 並已偵測 為 SPAM

12 Content of headers 收件人與收回覆的 email 相同 ,常理應不相同.

13 Example-2 Server 上 Maillog 的內容

14 Conclusion Identification rate ≒ 80%. Defined rules with subjectiveness. Better to combine filtering of content. –eg. SpamAssassin

15 Please give us your comments. Thank you.


Download ppt "Filtering of Spam E-Mails Using Back-Propagation Neural Networks Class :資四A Professor :楊維忠 Reporter :林文仁 Team Members :江念庭 林俊宇 黃國峰."

Similar presentations


Ads by Google