Download presentation
Presentation is loading. Please wait.
Published byChrystal Watts Modified over 9 years ago
1
Objective- To use the distributive property to simplify variable expressions. Distributive Property a(b + c) = ab + ac or a(b - c) = ab - ac Order of OperationsDistributive Property 6(3 + 5) 6(8) 48 6(3) + 6(5) 18 + 30 48 Why distribute when order of operations is faster ?
2
Use the distributive property to simplify. 1) 3(x + 7) 2) 2(a - 4) 3) -7(8 - m) 4) 3(4 - a) 5) (3 - k)5 6) x(a + m) 7) -4(3 - r) 8) 2(x - 8) 9) -(2m - 3) 10) (6 - 2y)3 3x + 21 2a - 8 -56 + 7m 12 - 3a 15 - 5k ax + mx -12 + 4r 2x - 16 -2m + 3 18 - 6y
3
Use the distributive property to simplify. 1) 4(y - 7) 2) 3(b + 4) 3) -5(9 - m) 4) 5a(4 - a) 5) (7 - k)6 6) a(c + d) 7) - (-3 - r) 8) 4x(x - 8) 9) -5m(2m + 3) 10) (6 - 2y)-3y 4y - 28 3b + 12 -45 + 5m 20a - 5a 2 42 - 6k ac + ad 3 + r 4x - 32x 2 -10m - 15m 2 6 - 5y
4
Geometric Model for Distributive Property 3 7 4 Two ways to find the total area. Width by total lengthSum of smaller rectangles 4(3 + 7)
5
Geometric Model for Distributive Property 3 7 4 Two ways to find the total area. Width by total lengthSum of smaller rectangles 4(3 + 7)4(3) + 4(7) 4(3)4(7) =
6
Geometric Model for Distributive Property 4 x 9 Two ways to find the total area. Width by total lengthSum of smaller rectangles 9(4 + x)9(4) + 9(x) =
7
Subtracting a Quantity 1) -(x + 6) 2) -(2x - 8) 3) 10- (4m + 3) 4) 2(x - 5) - (x - 3) 5) -(3a + 1) 6) -(-3x + 2x -7) 7) -12 - (3y - 8) 8) 4(3k - 5) - (2k + 9) -x - 6 -2x + 8 10 - 4m - 3 - 4m + 7 2x - 10 - x + 3 x - 7 -3a - 1 +3x - 2x + 7 -12 - 3y + 8 - 3y - 4 12k - 20 - 2k - 9 10k - 29 2 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.