Download presentation
Presentation is loading. Please wait.
Published byJesse Bradley Modified over 9 years ago
1
Trigonometric Ratios of Acute Angles
2
Rt △ ABC ∠ ACB=90° To ∠ BAC : Opposite: a=BC Hypotenuse: h=AB Adjacent: b=AC NameAbbreviationExpressionSinesina/h Cosinecosb/h Tangenttana/b Cotangentcotb/a Secantsech/b Cosecantcsch/a
3
sin(90°-α)=cosα cos(90°-α)=sinα tan(90°-α)=cotα cot(90°-α)=tanα sinα /cosα =tanα sin 2 α+cos 2 α=1 sinα =tanα ·cosα cosα =cotα ·sinα cotα =cosα ·cscα tanα ·cotα =1 Connections
4
Example 1. Rt △ ABC ∠ ACB=90° BC=6 AB=10 sin ∠ B=? cos ∠ B=? tan ∠ B=?
5
AC= (10 2 -6 2 )=8 AC= (10 2 -6 2 )=8 sin ∠ B= = = sin ∠ B= = = cos ∠ B= = = cos ∠ B= = = tan ∠ B= = = tan ∠ B= = = 6 10
6
Example 2. 0°< α <90° sin α = 0°< α <90° sin α = cos α =? cos α =?
7
Example 3. Rectangle ABCD, AB = 10 , BC = 8 , point E is on AD. Fold the △ CDE along CE , point D is just on AB. Calculate the value of tan ∠ AFE.
8
∵ AB = 10, rectangle ABCD ∴ DC=10 ∴ FC=10 ∵ FC=10,BC=8,Rt △ FCB ∴ FB=6 ∴ AF=4 If AE=x ∵ AE+ED=8, ED=EF ∴ AE+EF=8 ∴ EF=8-x ∴ x 2 +4 2 =(8-x) 2 ∴ x=3 ∴ AE=3 ∴ tan ∠ AFE=AE/AF=3/4
9
Square sin 2 α +cos 2 α =1 cos2 α =cos 2 α -sin 2 α =1-2sin 2 α =2cos 2 α- 1 sin2 α =2sin α cos α tan 2 α +1=1 / cos 2 α 2sin 2 α =1-cos2 α cot 2 α +1=1 / sin 2 α =1-2sin 2 α =2cos 2 α- 1 sin2 α =2sin α cos α tan 2 α +1=1 / cos 2 α 2sin 2 α =1-cos2 α cot 2 α +1=1 / sin 2 α Product sin α =tan α× cos α cos α =cot α× sin α tan α =sin α× sec α cot α =cos α× csc α sec α =tan α× csc α csc α =sec α× cot α Reciprocal tan α× cot α =1 sin α× csc α =1 cos α× sec α =1 Quotient sin α/ cos α =tan α =sec α/ csc α cos α/ sin α =cot α =csc α/ sec α
10
Practicing 1. △ ABC, ∠ C=90°,AB=2,AC=1,sinB=__. ( A ) 1/2 ( B ) √ 2/2 ( C ) √ 3/2 ( D ) 2 2. Rt △ ABC ,∠ C=90°, cosA=1/2, ∠ B=. 3. Rt △ ABC ,∠ C=90°, BC=a, c=___. (A)c=a sinA (C)c=b tanA (B)c=a/sinA (D)c=a/cosA A 30 B
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.