Download presentation
Presentation is loading. Please wait.
Published byHannah Patrick Modified over 9 years ago
1
I R F U Nucleon structure studies with the COMPASS experiment at CERN Stephane Platchkov Institut de Recherche sur les lois Fondamentales de l’Univers CEA/IRFU, Saclay, France (for the COMPASS Collaboration) International Conference on New Frontiers in Physics Kolymbari, Aug.23-30, 2015
2
I R F U Nucleon structure studies with COMPASS COMPASS I Longitudinally polarized DIS and SIDIS Transversely polarized SIDIS COMPASS II Deeply-Virtual Compton Scattering (DVCS) Massive lepton pairs from Drell-Yan process Not covered in this talk Hadron spectroscopy, etc… ► Talk by F. Nerling this afternoon S. PlatchkovICNFP, Kolymbari 2015 2
3
I R F U COMPASS – physics and tools 1/2 S. PlatchkovICNFP, Kolymbari 2015 3 from Bacchetta Deep Inelastic Scattering (DIS) Semi-Inclusive DIS (L or T) Drell-Yan process
4
I R F U COMPASS – physics and tools 2/2 S. PlatchkovICNFP, Kolymbari 2015 4 Transversity Momentum Distributions: TMD (x,k T ): probe the transverse parton momentum dependence Generalized Parton Distributions : GPD (x,b T ): probe the transverse parton distance dependence Semi-Inclusive DIS Drell-Yan process Deeply Virtual Compton Scattering
5
I R F U COMPASS – a fixed target experiment at CERN A very versatile setup Several beams available: µ +, µ -, h+, h -, e - => Several ways of probing the nucleon structure S. PlatchkovICNFP, Kolymbari 2015 5 50 m Energy: 100 – 200 GeV Intensity: up to 10 9 /spill Large acceptance, PID detectors Several particles in the final state Large (1.2 m) polarized target
6
I R F U COMPASS – polarized target S. PlatchkovICNFP, Kolymbari 2015 6 Two 60 cm oppositely polarized cells Target cells ( 2 x 60 cm) Superconducting solenoid (2.5T) High magnetic field High field uniformity Very low temperature L or T polarization
7
I R F U Interaction due to one single photon Scattering from nearly free partons Structure functions depend on x only (Bjorken, 1968) Q 2 dependence is governed by the QCD evolution Deep-Inelastic Lepton Scattering S. PlatchkovICNFP, Kolymbari 2015 7
8
I R F U Unpolarized measurements and QCD fits S. PlatchkovICNFP, Kolymbari 2015 8
9
I R F U Polarized structure function g 1 (x) – world data S. PlatchkovICNFP, Kolymbari 2015 9 Data are used as input to a global QCD fit
10
I R F U Reminder: the proton spin problem S. PlatchkovICNFP, Kolymbari 2015 10 Naive quark model : = 1.0 Relativistic quark model: ≈ 0.6 Experiment: ≈ 0.3
11
I R F U x q(x) xGxG xsxsxdxdxuxu Inputs: world data, functional forms, assume SU(3) ► G is determined through DGLAP evolution (NLO) COMPASS NLO pQCD fit to g 1 (x) S. PlatchkovICNFP, Kolymbari 2015 11
12
I R F U Inputs: world data, functional forms, assume SU(3) ► G is determined through DGLAP evolution (NLO) x q(x) xGxG xsxsxdxdxuxu COMPASS NLO pQCD fit to g 1 (x) S. PlatchkovICNFP, Kolymbari 2015 12
13
I R F U Contribution of gluons to the nucleon spin Gluons: spin 1, no charge Tool : Photon-Gluon Fusion (PGF) Identify the PGF process? 1. Detect charmed quarks: clean signature, but limited statistics “Open Charm” method 2. Detect light quarks: high statistics, but large physical background “Hadron production” method S. PlatchkovICNFP, Kolymbari 2015 13 Rely on a Monte-Carlo estimate of the background
14
I R F U G/G results S. PlatchkovICNFP, Kolymbari 2015 14 G/G = 0.113±0.038 (stat)±0.035(sys) Open charm World direct G/G extraction (LO) Hadron production
15
I R F U Polarized Semi-Inclusive DIS (SIDIS) S. PlatchkovICNFP, Kolymbari 2015 15
16
I R F U SIDIS asymmetries: World proton data S. PlatchkovICNFP, Kolymbari 2015 16 COMPASS preliminary
17
I R F U Polarized PDFs as determined by pSIDIS S. PlatchkovICNFP, Kolymbari 2015 17
18
I R F U The strange quark puzzle S. PlatchkovICNFP, Kolymbari 2015 18
19
I R F U s puzzle: what about Fragmentation Functions? S. PlatchkovICNFP, Kolymbari 2015 19 An independent measurement of D 1 (z,Q 2 ): hadron multiplicities
20
I R F U Kaon ( K + ) multiplicities M K (z): in 9 x bins S. PlatchkovICNFP, Kolymbari 2015 20
21
I R F U Kaon Fragmentation Function (COMPASS fits) S. PlatchkovICNFP, Kolymbari 2015 21
22
I R F U Transversity structure functions Transversity? ► Transversely polarized quarks in a transversely polarized nucleon (to the direction of the virtual photon) Third distribution function (leading twist) S. PlatchkovICNFP, Kolymbari 2015 22
23
I R F U Transverse Momentum Dependent PDFs S. PlatchkovICNFP, Kolymbari 2015 23
24
I R F U Transverse (Collins) asymmetries S. PlatchkovICNFP, Kolymbari 2015 24 K- K+
25
I R F U Transversity QCD fit S. PlatchkovICNFP, Kolymbari 2015 25
26
I R F U Generalized Parton Distributions (GPD) S. PlatchkovICNFP, Kolymbari 2015 26 GPD: correlation between the long. momentum x and the transverse position b T Measured in exclusive reactions 4 GPDs: Unpolarized target: GPD H Polarized target: GPD E
27
I R F U DVCS and BH cross section for µ + and µ - Cross section for µp -> µpγ DVCS and BH (known) processes: COMPASS beams: opposite charge/spin Charge-and-Spin Sum Charge-and-Spin Difference s S. PlatchkovICNFP, Kolymbari 2015 27 DVCS BH
28
I R F U DVCS run – main new equipment S. PlatchkovICNFP, Kolymbari 2015 28 2x2 m 2 electromagnetic calorimeter, ECAL0 4.0 m longTime-Of-Flight detector: 24 inner and 24 outer slabs 50 m ECAL1 ECAL2 2.5 m long LH target ECAL0
29
I R F U DVCS – the COMPASS x B regions – SIMULATION S. Platchkov ICNFP, Kolymbari 2015 29 DVCS BH DVCS BH 0.005 0.03
30
I R F U Test run – 4 days with a 40 cm long H 2 target DVCS – the COMPASS x B regions – REAL DATA S. PlatchkovICNFP, Kolymbari 2015 30 DVCS 27 8 13 4 54 BH dominance Interference DVCS dominance 2009 data
31
I R F U DVCS – SUM of + and - cross sections S. PlatchkovICNFP, Kolymbari 2015 31 Expected statistics in 2x6 months of data taking
32
I R F U Drell-Yan cross section: Features (parton model): Cross section depends on τ = M 2 /s Convolution of quark and antiquark PDFs Can be used to determine PDFs in , K, p Transverse momentum of µµ pair is small No fragmentation process Confirmed in QCD Assumptions: factorization Polarized (+ unpolarized) Drell-Yan measurements S. PlatchkovICNFP, Kolymbari 2015 32 Ito et al. PRD 23(1981)604. (from Kenyon, RPP, 1982) FERMILAB: non-DY contribution
33
I R F U Hadron (pion + kaon + antiproton) beam Transversely polarized NH 3 target Large muon angular acceptance With a negative pion beam: u /u annihilation COMPASS acceptance Dominated by valence quarks (x ≥ 0.1) COMPASS exclusive setup advantages S. PlatchkovICNFP, Kolymbari 2015 33
34
I R F U Full formalism for two spin ½ hadrons COMPASS: access 4 TMDs: Boer-Mulders, Sivers, Pretzelosity, Transversity Access 4 TMDs – asymmetry modulations: DY (polarized) cross section expansion S. PlatchkovICNFP, Kolymbari 2015 34 Arnold, Metz and Schlegel, Phys. Rev. D79 (2009) 034005. Boer-Mulders Sivers Pretzelosity Transversity Worm-Gear
35
I R F U Transverse Momentum Dependent PDFs S. PlatchkovICNFP, Kolymbari 2015 35 Sivers: correlation between the quark transverse momentum and the nucleon transverse spin (polarized nucleon) Boer-Mulders: correlation between the quark transverse spin and transverse momentum (unpolarized nucleon)
36
I R F U TMDs in Drell-Yan and SIDIS SIDIS vs TMD SIDIS: TMD and FF Drell-Yan: two TMDs Factorization TMDs (unlike PDFs) can be process dependent (“non-universality”) Opposite sign in SIDIS and DY processes: S. PlatchkovICNFP, Kolymbari 2015 36 Collins, Soper, Sterman, Adv. Ser. High En Phys. 5, 1988.
37
I R F U Test setup (3 days in 2009) 190 GeV negative pion beam, I ≤ 1.5x10 7 /s (instead of 10 8 /s) “poor-man” hadron absorber ( concrete and steel) two polyethylene target cells preliminary DY trigger Results Count rate confirmed Mass resolution as expected Good vertex resolution Low background at high masses Drell-Yan – test data taking S. PlatchkovICNFP, Kolymbari 2015 37
38
I R F U Polarized Drell-Yan – expected results S. PlatchkovICNFP, Kolymbari 2015 38 SiversBoer-Mulders PretzelosityTransversity 140 days of data 6.10 8 pions/spill 2 x 55 cm NH 3 target 4 < M mm < 9 GeV
39
I R F U Summary COMPASS is the largest fixed-target experiment at CERN Unique combination of hadron and muon beams of both polarities COMPASS has a very versatile experimental setup Rich physics program dedicated to both nucleon structure and hadron spectroscopy studies Present schedule 2015 : Drell - Yan data taking (1 st “year” ≈ 140 days) 2016 : DVCS data taking 2017 : DVCS data taking 2018 : Drell-Yan data taking (2 nd year) ICNFP, Kolymbari 2015S. Platchkov 39
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.