Download presentation
Presentation is loading. Please wait.
Published byBridget Greene Modified over 9 years ago
1
Recent Progress in Mesh Parameterization Speaker : ZhangLei
2
Decade Retrospect 1997 1998 1999 20002001 2002 20032004200520062007 75 papers
3
Research Blocks Planar Parameterization MIPS, LSCM, Mean-value, ABF++,… Manifold Parameterization Spherical parameterization Simplex parameterization Inter-surface parameterization Volumetric Parameterization To be expected…
4
Alla Sheffer University of British Columbia ALICE, GEOMETRICA @INRIA Bruno LevyPierre Alliez M. S. Floater University of Oslo Craig Gotsman Israel Institute of Technology Hugues Hoppe Microsoft Research David Xianfeng Gu Stony Brook@State university of NewYOrk Kai Hormann Clausthal University of Technology
5
Curvilinear Spherical Prameterization Zayer, R. MPI Rossl, C. INRIA Seidel, H.P. MPI Shape Modeling and Applications, 2006
6
Curvilinear Coordinates System
7
Initial Parameterization pole date line pole
9
Secondary Parameterization Angle or Area Distortion Control
11
Local Domain Distortion Reduction Tangential Laplacian Smoothing
12
Results
13
Conclusion Pros Easy-to-implement Robust Cons Moderate distortion Poles and date lines selection
14
Linear Angle Based Parameterization Zayer, R. MPI Levy, B. INRIA-Alice Seidel, H. P. MPI Eurographics Symposium on Geometry Processing, 2007
15
ABF&ABF++ Sheffer, A., de Sturler, E. Parameterization of Faceted Surfaces for Meshing Using Angle Based Flattening. Engineering with Comp uters, 2001. Sheffer, A., Levy, B., Mogilnitsky, M., Bogomyakov, A. ABF++: Fast and Robust Angle Based Flattening. ToG, 2005. Coordinate space Angle space Coordinate space
16
ABF Planar Angle Constraints Vertex consistency Triangle consistency Wheel consistency
17
ABF Lagrange Multiplier Optimization Non-linear
18
Linearization Denote Logarithmic & Taylor expansion
19
linear
20
Linear ABF
21
Results
22
Conclusion ABF++ Pros & Linear computation
23
Discrete Conformal Mappings via Circle Patterns Kharevych, L. Caltech Springborn, B. TU Berlin Schroder, P. Caltech ACM Transactions on Graphics, 2006
24
Circle Packing combinatorics geometry William Thurston
25
THEOREM (The Dirichlet Problem) Let K be a complex trangulating a closed topological disc, let A be an angle sum target function of K, and assume that is a function defined on the boundary vertices of K. The n there exists a unique Euclidean packing label R for K with the property that for each boundary vertex. CirclePack http://www.math.utk.edu/~kens/
26
Circle Pattern
27
Circle Pattern Problem To reconstruct a circle pattern from an a bstract triangulation and the intersection angles.
28
Circle Pattern Delaunay Triangulation for interior edges for boundary edges Edge weight
29
Circle Pattern Delaunay Triangulation
30
Circle Pattern Problem Local Geometry of an Edge For a flat triangle
31
Variational Circle Patterns
32
Circle Pattern Problem vs Parameterization To reconstruct a circle pattern from an a bstract triangulation and the intersection angles. Discrete conformal parameterization of triangular mesh ?
33
Parameterization Algorithm 1. Setting the angles for each edge; 2. Minimizing the energy; 3. Generating the layout;
34
Parameterization Algorithm 1. Setting the angles for each edge; 2. Minimizing the energy; 3. Generating the layout;
35
Parameterization Algorithm 1. Setting the angles for each edge; 2. Minimizing the energy; 3. Generating the layout;
36
Results
37
Conclusion Pros Circle version of ABF … Cons Nonlinear
38
Periodic Global Parameterization Ray, N., Li, W. C., Levy, B. INRIA-Alice Sheffer, A. University of British Columbia Alliez, P. INRIA-Geometrica ACM Transactions on Graphics, 2006
39
Global Parameterization Given two charts C and C’, if their intersection is a topological disk, then the image of the intersection in param eterization space by and are linked by a geometric transition function : Translation: affine manifold General: complex manifold
40
Periodic Parameterization Rotation Translation
41
Problem Input: Output:
43
Formulation Objective
44
Transition function
45
Application Quad-Remeshing
46
Most Shape-preserving Mesh Parameteri- zation by Rigid Alignment
47
Complex Manifold Rigid transformation Translation Rotation
48
Local Shape-preserving Prameteriz ation 1-ring Patch: Geodesic Polar Map is an boundary vertex and otherwise
49
Global Shape-preserving Parameteriz ation Rigid Alignment
50
Least-squares Sense To minimize
51
Non-linear Configuration Solving by iterative linear system
52
Initial Parameterization For disc-like mesh with one boundary Floater, M. S. Parameterization and smoothing approximation of s urface triangulations. CAGD, 1997.
53
For mesh with multi-boundary Chen, Z. G., Liu, L. G., Zhang, Z. Y., Wang, G. J. Surface Paramete rization via aligning optimal local flattening. SPM, 2007.
54
Results General Curved Mesh
55
Developable Mesh
57
Thanks for your attention!
58
Planar Parameterization Disk-topology Mesh One-boundary Multi-boundary With constraints
59
Manifold Parameterization Spherical parameterization Simplex parameterization Inter-surface parameterization
60
Volumetric Parameterization
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.