Presentation is loading. Please wait.

Presentation is loading. Please wait.

Scalable Video Multicast with Adaptive Modulation and Coding in Broadband Wireless Data Systems Peilong Li *, Honghai Zhang *, Baohua Zhao +, Sampath Rangarajan.

Similar presentations


Presentation on theme: "Scalable Video Multicast with Adaptive Modulation and Coding in Broadband Wireless Data Systems Peilong Li *, Honghai Zhang *, Baohua Zhao +, Sampath Rangarajan."— Presentation transcript:

1 Scalable Video Multicast with Adaptive Modulation and Coding in Broadband Wireless Data Systems Peilong Li *, Honghai Zhang *, Baohua Zhao +, Sampath Rangarajan + * Dept. Computer Science and Technology, University of Science and Technology of China + NEC Laboratories America, USA IEEE/ACM Transactions on Networking, vol. 20, no. 1, Feb. 2012, pp. 57–68.

2 Outline Introduction (Problem/Related Work/Goals) Network Environment and Problem formulation Utility optimization –Single Session MCS Assignment –Multisession Resource Allocation Simulations Conclusion

3 Introduction Future mobile broadband wireless networks (4G) –LTE-Advanced, WiMAX peak data rate of 100 Mb/s for high-mobility users peak data rate of 1 Gb/s for low-mobility users –Such a high bandwidth makes it a reality to provide real-time video services IPTV services, live video streaming, and online telecast of sports

4 Introduction Wireless spectrum is shared by many users and many video sessions –each video session may have very large bandwidth and stringent delay requirement Wireless multicast –an efficient mechanism to support such services because of the shared nature of the wireless medium

5 Introduction High-speed multicast services –Based on audiovisual coding spec. – SVC, the raw video session can be converted into different layer with different data rates. Base Layer Enhancement Layer 1 Base Layer Enhancement Layers 1 Base Layer Enhancement Layers 2

6 Introduction High-speed multicast services –Based on audiovisual coding spec. – SVC, the raw video session can be converted into different layer with different data rates. Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4 MS j video session 1

7 Introduction Modulation and Coding Scheme (MCS) m2m2 m3m3 m4m4 m5m5 m6m6 m1m1 1 2 3 4 5 6 7 8

8 Introduction Full Session Coverage (FSC) –All users in each video session group (belonging to FSC) must receive a minimum data rate (base layer). video session 1 video session 2 video session 3 FSC support: video sessions {1, 3} FSC

9 Problem How to allocate the radio resource to multiple multicast video sessions for maximizing system utility? –MCS scheme for each video layer of video session

10 Related Work [5] S. Deb, S. Jaiswal, and K. Nagaraj, “Real-time video multicast in WiMAX networks,” IEEE INFOCOM, 2008. This paper proposed a fast greedy algorithm for both single- session and multisession multicast services for maximizing the system utility.

11 Related Work [5] S. Deb, S. Jaiswal, and K. Nagaraj, “Real-time video multicast in WiMAX networks,” IEEE INFOCOM, 2008. However, it is very difficult to enforce the assumption –enforces full session coverage (FSC) on all video sessions –all enhancement layers have the same size

12 Goal Develop the resource allocation algorithm for multiple multicast video sessions with FCS support or without FCS support. –MCS scheme for each video layer of video session –The enhancement layers of video sessions have different sizes. Maximize the system utility

13 Network Environment This paper assumes that –T slots are available in a frame for multicast video transmission. –All sub-channels and slots have the same channel condition for a given user. Preamble FCH DL-MAP 1 2 3 4 5 6 7 8 Sub-channel Logical Number OFDMA symbols

14 Network Environment

15 This paper assumes that –S: the number of multicast sessions (s = 1, …, S) –J [s] : the number of users in session s (j = 1, …, J) –The possible MCSs are m = 1, …, M (m=1, QPSK ½) –M j : the maximum MCS that can be received by user j –R m : the data rate provided by a single slot with MCS m (R m <R m+1 ) –L [s] : the number of layers in session s – [s] : the data rate of layer l of video session s –  [s] : the slots to transmit the layer l of video session s with MCS m –  [s] : indicator function, 1, means layer l of session s is modulated MCS m 0, otherwise

16 Problem Formulation [s] : the data rate of layer l of video session s  [s] : the received rate for user j Layer 1 Layer 2 Layer 3 Layer 4 MS j

17 Problem Formulation C : the set of the video sessions requiring FSC, C  {1, 2, …, S} N [s] : the set of users in video session s Base layer (l=1)

18 Problem Formulation : an arbitrary non-decreasing, nonnegative utility function of rate Objective:

19 Problem Formulation A video layer can be modulated with at most one MCS. Total transmission slots for all video sessions cannot exceed the available slots T.

20 Utility optimization Single-Session MCS Assignment (for each session s) Multisession Resource Allocation

21 Single-Session MCS Assignment N m : the set of user that can receive MCS m 4 users 7 users MCS 3 MCS 2 12 users MCS 1 1 2 3 4 5 6 8 9 7 11 12 10 N 3 = users {1, 2, 3, 4} N 2 = users {1, 2, 3, 4, 5, 6, 7} N 1 = users {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

22 Single-Session MCS Assignment data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps Layer 3 3 =3 kbps Layer 2 2 =2 kbps Layer 1 1 =1 kbps 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)

23 Single-Session MCS Assignment  j,l : the utility for user j when L j = l. data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps  j,4 = 10 Layer 3 3 =3 kbps  j,3 = 6 Layer 2 2 =2 kbps  j,2 = 3 Layer 1 1 =1 kbps  j,1 = 1 T=6 (slots)

24 Single-Session MCS Assignment data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps  j,4 = 10  4,1 = 4 slots  j,4 = 10  4,2 = 2 slots  j,4 = 10  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots  j,3 = 6  3,2 = 1.5 slots  j,3 = 6  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)

25 Single-Session MCS Assignment u(l, m, t): the maximal utility when considering all layers and users who can receive the MCS m –Layer l is modulated with MCS m –There are remaining resource t for all layers l’>l

26 Single-Session MCS Assignment u(l, m, t): the maximal utility when considering all layers and users who can receive the MCS m

27 Single-Session MCS Assignment Lemma 1: if the jth layer of multicast session is modulated with MCS m, the (j+1)th layer is either not transmitted or is modulated with MCS m’  m. (for higher utility) Proof of Lemma 1 (contradiction) –Assume that the jth layer is modulated with MCS m’ the (j+1)th layer is modulated with MCS m Layer j Layer j+1 MCS m MCS m’

28 Single-Session MCS Assignment Layer j Layer j+1 MCS m MCS m’ x users y users MCS m’ MCS m m’  m Proof of Lemma 1

29 Single-Session MCS Assignment Layer j Layer j+1 MCS m MCS m’ x users y users Layer j+1 Layer j m’  m Proof of Lemma 1 x users y users MCS m’ MCS m x  ( j + j+1 )

30 Single-Session MCS Assignment Layer j Layer j+1 MCS m’ MCS m x users y users Layer j+1 Layer j x  ( j + j+1 ) Layer j x  ( j + j+1 ) + y  ( j ) m’  m Proof of Lemma 1 x users y users MCS m’ MCS m

31 Single-Session MCS Assignment Lemma 1: if the jth layer of multicast session is modulated with MCS m, the (j+1)th layer is either not transmitted or is modulated with MCS m’  m. (for higher utility) Lemma 1 is proved by contradiction !

32 Single-Session MCS Assignment Lemma 2: The value of u(l, m, t) depends only on the MCS assignment of the video layers higher than or equal to l MCS: m............ l th layer base layer L th layer Proof of Lemma 2 –MCS levels should be assigned in an ascending order from the base layer to the highest enhancement layer –In the scenario of u(l, m, t), Layers below l must be modulated with MCS 1 to m –Any user in N m can receive at least layers 1 to l –i.e.,  j  N m, L j  l

33 Single-Session MCS Assignment Lemma 2: The value of u(l, m, t) depends only on the MCS assignment of the video layers higher than or equal to l Proof of Lemma 2 –  j  N m, L j  l

34 Single-Session MCS Assignment data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps  j,4 = 10  4,1 = 4 slots  j,4 = 10  4,2 = 2 slots  j,4 = 10  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots  j,3 = 6  3,2 = 1.5 slots  j,3 = 6  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)

35 Single-Session MCS Assignment data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots  j,3 = 6  3,2 = 1.5 slots  j,3 = 6  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)  j,4 = 10

36 data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots  j,3 = 6  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)  j,4 = 10  j,3 = 6

37 data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)  j,4 = 10  j,3 = 6

38 data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps 40+8*6=86  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)  j,4 = 10  j,3 = 6

39 data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps 40+8*6=86  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps  j,2 = 3  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)  j,4 = 10  j,3 = 6

40 data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps 40+8*6=86  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps 86+0*3=86  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps  j,1 = 1  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)  j,4 = 10  j,3 = 6  j,2 = 3

41 data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps 40+8*6=86  3,1 = 3 slots 40+3*6=58  3,2 = 1.5 slots 40+0*6=40  3,3 = 0.75 slot Layer 2 2 =2 kbps 86+0*3=86  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps 0  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)  j,4 = 10  j,3 = 6  j,2 = 3  j,1 = 1 u(l, m, t)=0, when t<0

42 data rate MCS 1 (1) MCS 2 (2) MCS 3 (4) Layer 4 4 =4 kbps 12*10=120  4,1 = 4 slots 7*10=70  4,2 = 2 slots 4*10=40  4,3 = 1 slot Layer 3 3 =3 kbps  j,3 = 6  3,1 = 3 slots 70+0*6=70  3,2 = 1.5 slots  j,3 = 6  3,3 = 0.75 slot Layer 2 2 =2 kbps 70+5*3=85  2,1 = 2 slots  j,2 = 3  2,2 = 1 slot  j,2 = 3  2,3 = 0.5 slot Layer 1 1 =1 kbps 85+0*1=85  1,1 = 1 slot  j,1 = 1  1,2 = 0.5 slot  j,1 = 1  1,3 = 0.25 slot 4 users 7 users MCS 3 (R 3 =4 kbps per slot) MCS 2 (R 2 =2 kbps per slot) 12 users MCS 1 (R 1 =1 kbps per slot) 1 2 3 4 5 6 8 9 7 11 12 10 T=6 (slots)  j,4 = 10  j,3 = 6  j,2 = 3  j,1 = 1

43 Single-Session MCS Assignment  : indicator function, 1, means layer l is modulated MCS m 0, otherwise

44 Utility optimization Single-Session MCS Assignment Multisession Resource Allocation

45 Multiple video sessions

46 Multisession Resource Allocation The maximum utility of session s with t available slots.

47 Multisession Resource Allocation Objective of multisession resource allocation where minimum required slots of session s

48 Multisession Resource Allocation v(s, t): the maximum utility of video session 1 to s Compute v(1, t) for all possible t

49 Multisession Resource Allocation Compute the v(s, t) to v(S, T)

50 Simulation Setup 1 base station 200 mobile users (uniform distribution)

51 Simulation Setup

52 Simulation Greedy [5]: –all video sessions transmitted with support of FSC –requires equal size for all enhancement layers Naive: –divides the resource (slots) equally among video sessions –only uses the highest MCS which can be received by all users for whole video session

53 Simulation Layers: 2~10

54 Simulation Layers: 2~10

55 Simulation

56 Layers: 2~10 Simulation

57 Conclusion This paper studies the resource allocation problem for SVC- encoded video multicast in wireless networks. –Maximize the total system utility –Support of variable layer size –Support configurable full session coverage (FSC) TheEND Thanks for your attention !


Download ppt "Scalable Video Multicast with Adaptive Modulation and Coding in Broadband Wireless Data Systems Peilong Li *, Honghai Zhang *, Baohua Zhao +, Sampath Rangarajan."

Similar presentations


Ads by Google