Download presentation
Presentation is loading. Please wait.
Published byTracy Bradford Modified over 9 years ago
1
EE141 Machine motivation and cognitive neuroscience approach Janusz Starzyk www.ent.ohiou.edu/~starzyk Computational Intelligence
2
EE141 Traditional Artificial Intelligence Embodied Intelligence (EI) Embodiment of Mind EI Interaction with Environment How to Motivate a Machine Goal Creation Hierarchy GCS Experiment Motivated Learning Challenges of EI We need to know how to organize it We need means to implement it We need resources to build and sustain its operation Promises of EI To economy To society Outline http://www.referenceforbusiness.com
3
EE141 “…Perhaps the last frontier of science – its ultimate challenge- is to understand the biological basis of consciousness and the mental process by which we perceive, act, learn and remember..” from Principles of Neural Science by E. R. Kandel et al. E. R. Kandel won Nobel Price in 2000 for his work on physiological basis of memory storage in neurons. “… The question of intelligence is the last great terrestrial frontier of science...” from Jeff Hawkins On Intelligence. Jeff Hawkins founded the Redwood Neuroscience Institute devoted to brain research Intelligence AI’s holy grail From Pattie Maes MIT Media Lab http://lifeboat.com
4
EE141 Is what is intelligence? http://www.redorbit.com/news/science/
5
EE141 Various Definitions of Intelligence The American Heritage Dictionary: l The capacity to acquire and apply knowledge. l The faculty of thought and reason. Webster Dictionary: l The act or state of knowing; the exercise of the understanding. l The capacity to know or understand; readiness of comprehension; Wikipedia – The Free Encyclopedia: l The capacity to reason, plan, solve problems, think abstractly, comprehend ideas and language, and learn.reasonplansolve problemsabstractlylanguagelearn Kaplan & Sadock: l The ability to learn new things, recall information, think rationally, apply knowledge and solve problems. On line dictionary dict.die.netdict.die.net l The ability to comprehend; to understand and profit from experience The classical behavioral/biologists: l The ability to adapt to new conditions and to successfully cope with life situations. Dr. C. George Boeree, professor in the Psychology Department at Shippensburg University:Psychology DepartmentShippensburg University l A person's capacity to (1) acquire knowledge (i.e. learn and understand), (2) apply knowledge (solve problems), and (3) engage in abstract reasoning. Stanford University Professor of Computer Science Dr. John McCarthy, a pioneer in AI: l The computational part of the ability to achieve goals in the world. Scientists in Psychology: l Ability to remember and use what one has learned, in order to solve problems, adapt to new situations, and understand and manipulate one’s reality.understandreality
6
EE141 From http://www.indiana.edu/~intell/map.shtml Mainstream Science on Intelligence December 13, 1994: An Editorial With 52 Signatories, by Linda S. Gottfredson, University of Delaware Intelligence is a very general mental capability that, among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn from experience. Intelligence
7
EE141 Animals’ Intelligence Defining intelligence through humans is not appropriate to design intelligent machines: –Animals are intelligent too Dog IQ test: Dogs can learn 165 words (similar to 2 year olds) Average dog has the mental abilities of a 2-year-old child (or better) They would beat a 3- or 4-year-old in basic arithmetic, Dogs show some basic emotions, such as happiness, anger and disgust “The social life of dogs is very complex - more like human teenagers - interested in who is moving up in the pack, who is sleeping with who etc,“ says professor Stanleay Coren from University of British Columbia Border collies, poodles, and german shepards are the smartest dogs
8
EE141 Traditional AI Embodied Intelligence Abstract intelligence attempt to simulate “highest” human faculties: –language, discursive reason, mathematics, abstract problem solving Environment model Condition for problem solving in abstract way “brain in a vat” Embodiment knowledge is implicit in the fact that we have a body –embodiment supports brain development Intelligence develops through interaction with environment Situated in environment Environment is its best model
9
EE141 Design principles of intelligent systems Design principles synthetic methodology time perspectives emergence diversity/compliance frame-of-reference complete agent principle from Rolf Pfeifer “Understanding of Intelligence” From: www.spectrum.ieee.org/.../biorobot11f-thumb.jpg
10
EE141 Design principles of intelligent systems from Rolf Pfeifer “Understanding of Intelligence”, 1999 Interaction with complex environment ecological balance redundancy principle parallel, loosely coupled processes asynchronous sensory-motor coordination value principle cheap design Agent Drawing by Ciarán O’Leary- Dublin Institute of Technology
11
EE141 The principle of “cheap design” intelligent agents: “cheap” exploitation of ecological niche economical (but redundant) exploitation of specific physical properties of interaction with real world
12
EE141 Principle of “ecological balance” balance / task distribution between morphology neuronal processing (nervous system) materials environment balance in complexity given task environment match in complexity of sensory, motor, and neural system
13
EE141 The redundancy principle redundancy prerequisite for adaptive behavior partial overlap of functionality in different subsystems sensory systems: different physical processes with “information overlap” http://www.enspire.com/wp-content
14
EE141 Generation of sensory stimulation through interaction with environment multiple modalities constraints from morphology and materials generation of correlations through physical process basis for cross- modal associations
15
EE141 The principle of sensory-motor coordination self-structuring of sensory data through interaction with environment physical process — not „computational“ prerequisite for learning Holk Cruse no central control only local neuronal communication global communication through environment neuronal connections
16
EE141 The principle of parallel, loosely coupled processes Intelligent behavior emergent from agent-environment interaction Large number of parallel, loosely coupled processes Asynchronous Coordinated through agent’s –sensory-motor system –neural system –interaction with environment http://edwardrippen.com
17
EE141 So what is an Embodied Intelligence ?
18
EE141 Embodied Intelligence Definition Embodied Intelligence (EI) is a mechanism that learns how to survive in a hostile environment –Mechanism: biological, mechanical or virtual agent with embodied sensors and actuators –EI acts on environment and perceives its actions –Environment hostility is persistent and stimulates EI to act –Hostility: direct aggression, pain, scarce resources, etc –EI learns so it must have associative self-organizing memory –Knowledge is acquired by EI
19
EE141 EI mimics biological intelligent systems, extracting general principles of intelligent behavior and applying them to intelligent agents. Knowledge is not entered into such systems, but rather is a result of their successful interaction with the environment. Embodied intelligent systems adapt to unpredictable and dynamic situations in the environment by learning, which gives them a high degree of autonomy. Learning in such systems is incremental, with continuous prediction of the input associations based on the emerging models - only new information is registered in the memory. Embodied Intelligence
20
EE141 What is Embodiment of a Mind? http://elainewintman.com manwithoutqualities.com
21
EE141 Embodiment of a Mind Embodiment of a mind is a part of environment under control of the mind It contains intelligence core and sensory motor interfaces to interact with environment It is necessary for development of intelligence It is not necessarily constant or in the form of a physical body Boundary of embodiment transforms modifying brain’s self-determination
22
EE141 Brain learns own body’s dynamic Self-awareness is a result of identification with own embodiment Embodiment can be extended by using tools and machines Successful operation is a function of correct perception of environment and own embodiment Embodiment of Mind
23
EE141 Requirements for Embodied Intelligence State oriented Learns spatio-temporal patterns Situated in time and space Learning Perpetual learning Screening for novelty Value driven Pain detection Pain management Goal creation Competing goals Emergence artificial evolution self-organization
24
EE141 INPUTOUTPUT Simulation or Real-World System Task Environment Agent Architecture Long-term Memory Short-term Memory Reason Act Perceive RETRIEVALLEARNING EI Interaction with Environment From Randolph M. Jones, P : www.soartech.com
25
EE141 Kandel Fig. 23-5 Sensory Inputs Coding How do we process and represent sensory information? Richard Axel, 1995 Foot Hip Trunk Arm Hand Face Tongue Larynx Kandel Fig. 30-1 Visual, auditory, olfactory, tactile, smell -> motor
26
EE141 Challenges of Embodied Intelligence http://cdn.grin.com
27
EE141 Challenges of Embodied Intelligence Development of sensory interfaces Active vision Speech processing Tactile, smell, taste, temperature, pressure sensing Additional sensing –Infrared, radar, lidar, ultrasound, GPS, etc. –Can too many senses be less useful? Development of pain sensors Energy, temperature, pressure, acceleration level Teacher input Development of motor interfaces Arms, legs, fingers, eye movement Intelligence core Embodiment Sensors Actuators Environment
28
EE141 Challenges of Embodied Intelligence (cont.) Finding algorithmic solutions for Association, memory, sequence learning, invariance building, representation, anticipation, value learning, goal creation, planning Development of circuits for neural computing Determine organization of artificial minicolumn Self-organized hierarchy of minicolumns for sensing and motor control Self-organization of goal creation pathway
29
EE141 V. Mountcastle argues that all regions of the brain perform the same computational algorithm V. Mountcastle Groups of neurons (minicolumns) connected in a pseudorandom way Same structure Minicolumns organized in macrocolumns VB Mountcastle (2003). Introduction [to a special issue of Cerebral Cortex on columns]. Cerebral Cortex, 13, 2-4. Human Intelligence – Cortex Uniform Structure
30
EE141 How to Motivate a Machine ? A fundamental question is what motivates an agent to do anything, and in particular, to enhance its own complexity? What drives an agent to explore the environment and learn ways to effectively interact with it?
31
EE141 How to Motivate a Machine ? Pfeifer claims that an agent’s motivation should emerge from the developmental process. He called this the “motivated complexity” principle. Chicken and egg problem? An agent must have a motivation to develop while motivation comes from development? Steels suggested equipping an agent with self-motivation. “Flow” experienced when people perform their expert activity well would motivate to accomplish even more complex tasks. Humans get internal reward for activities that are slightly above their level of development (Csikszentmihalyi). But what is the mechanism of “flow”? Oudeyer proposed an intrinsic motivation system. Motivation comes from a desire to minimize the prediction error. Similar to “artificial curiosity” presented by Schmidhuber.
32
EE141 How to Motivate a Machine ? Can a machine that only implements externally given goals be intelligent? If not how these goals can be created? There is a need for a hierarchy of values. Not all values can be predetermined by the designer. There is a need for motivation to act, explore and learn. As machine makes new observations about the environment, there is a need to relate them to goals and values and create new goals and values.
33
EE141 How to Motivate a Machine ? Exploration is needed in order to learn and to model the environment. But is this mechanism the only motivation we need to develop intelligence? Can “flow” ideas explain goal oriented learning? Can we find a more efficient mechanism for learning? I suggest a simpler mechanism to motivate a machine. Although artificial curiosity helps to explore the environment, it leads to learning without a specific purpose. It may be compared to exploration in reinforcement learning. internal reward motivates the machine to perform exploration.
34
EE141 How to Motivate a Machine ? I suggest that it is the hostility of the environment, in the definition of EI that is the most effective motivational factor. It is the pain we receive that moves us. It is our intelligence determined to reduce this pain that motivates us to act, learn, and develop. Both are needed - hostility of the environment and intelligence that learns how to reduce the pain. Thus pain is good. Without pain there would be no intelligence. Without pain we would not be motivated to develop. Fig. englishteachermexico.wordpress.com/
35
EE141 Motivated Learning I suggest a goal-driven mechanism to motivate a machine to act, learn, and develop. A simple pain based goal creation system is explained next. It uses externally defined pain signals that are associated with primitive pains. Machine is rewarded for minimizing the primitive pain signals. Definition: Motivated learning (ML) is learning based on the self-organizing system of goal creation in embodied agent. Machine creates higher level (abstract) goals based on the primitive pain signals. It receives internal rewards for satisfying its goals (both primitive and abstract). ML applies to EI working in a hostile environment.
36
EE141 EI Interaction with Environment EI machine interacts with environment using its three pathways
37
EE141 Pain-center and Goal Creation for ML Simple Mechanism Creates hierarchy of values Leads to formulation of complex goals Pain comparators release reinforcement neurotransmitter: Pain increase - inhibitory Pain decrease - excitatory Forces exploration + - Environment Sensor Motor Pain level Dual pain level Pain increase Pain decrease (-) (+) Excitation (-) (+)
38
EE141 Abstract Goal Creation for ML The goal is to reduce the primitive pain level Abstract goals are created if they satisfy the primitive goals Expectation Association Inhibition Reinforcement Connection Planning -+ PainDual pain Food refrigerator -+ Stomach Abstract pain (Delayed memory of pain) “food”becomes a sensory input to abstract pain center Sensory pathway (perception, sense) Motor pathway (action, reaction) Primitive Level Level I Level II Eat Open
39
EE141 Abstract Goal Hierarchy Hierarchy of abstract goals is created if they satisfy the primitive goals Activation Stimulation Inhibition Reinforcement Echo Need Expectation -+ + Sugar level Primitive Level Level I Level II Money - Food Spend Eat + Sensory pathway (perception, sense) Motor pathway (action, reaction) Level III Job - Work
40
EE141 How can we make human level intelligence? We need to know how We need means to implement it We need resources to build and sustain its operation
41
EE141 From Ray Kurzwail, The Singularity Summit at Stanford, May 13, 2006 Resources – Evolution of Electronics
42
EE141 By Gordon E. Moore
43
EE141
44
From Ray Kurzwail, The Singularity Summit at Stanford, May 13, 2006 Clock Speed (doubles every 2.7 years)
45
EE141 Doubling (or Halving) times Dynamic RAM Memory “Half Pitch” Feature Size5.4 years Dynamic RAM Memory (bits per dollar)1.5 years Average Transistor Price1.6 years Microprocessor Cost per Transistor Cycle1.1 years Total Bits Shipped1.1 years Processor Performance in MIPS1.8 years Transistors in Intel Microprocessors2.0 years Microprocessor Clock Speed2.7 years From Ray Kurzwail, The Singularity Summit at Stanford, May 13, 2006
46
EE141 From Ray Kurzwail, The Singularity Summit at Stanford, May 13, 2006
47
EE141 Software or hardware? Sequential Error prone Require programming Low cost Well developed programming methods Concurrent Robust Require design Significant cost Hardware prototypes hard to build SoftwareHardware
48
EE141 Promises of embodied intelligence To society Advanced use of technology –Robots –Tutors –Intelligent gadgets Intelligence age follows –Industrial age –Technological age –Information age Society of minds –Superhuman intelligence –Progress in science –Solution to societies’ ills To industry Technological development New markets Economical growth ISAC, a Two-Armed Humanoid Robot Vanderbilt University
49
EE141 Sounds like science fiction If you’re trying to look far ahead, and what you see seems like science fiction, it might be wrong. But if it doesn’t seem like science fiction, it’s definitely wrong. From presentation by Feresight Institute
50
EE141 Embodied Artificial Intelligence Based on: [1] E. R. Kandel et al. Principles of Neural Science, McGraw-Hill/Appleton & Lange; 4 edition, 2000. [2] F. Inda, R. Pfeifer, L. Steels, Y. Kuniyoshi, “Embodied Artificial Intelligence,” International seminar, Germany, July 2003. [3] R. Chrisley, “Embodied artificial intelligence, ” Artificial Intelligence, vol. 149, pp.131-150, 2003. [4] R. Pfeifer and C. Scheier, Understanding Intelligence, MIT Press, Cambridge, MA, 1999. [5] R. A. Brooks, “Intelligence without reason,” In Proc. IJCAI-91. (1991) 569-595. [6] R. A. Brooks, Flesh and Machines: How Robots Will Change Us, (Pantheon, 2002). [7] R. Kurzweil The Age of Spiritual Machines: When Computers Exceed Human Intelligence, (Penguin, 2000).
51
EE141 Questions?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.