Presentation is loading. Please wait.

Presentation is loading. Please wait.

SOLREVIEWSOLREVIEW THE GEOMETRY SOLs Use the arrow keys   to move forward or backward. ( in review )

Similar presentations


Presentation on theme: "SOLREVIEWSOLREVIEW THE GEOMETRY SOLs Use the arrow keys   to move forward or backward. ( in review )"— Presentation transcript:

1 SOLREVIEWSOLREVIEW THE GEOMETRY SOLs Use the arrow keys   to move forward or backward. ( in review )

2 SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : =

3 SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: The Law of Syllogism C ontrapositive : “ If q then p. ” = I nverse:

4 SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” =

5 SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” “ If - q then - p. ” =

6 SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” “ If - q then - p. ” = The Transitive Property

7 SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )

8 SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )

9 SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )

10 SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )

11 SOLREVIEWSOLREVIEW Parallel Lines and Angles

12 SOLREVIEWSOLREVIEW Corresponding Angles are...

13 SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are...

14 SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are... Name them !

15 SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are... Name them !

16 SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are...

17 SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are...

18 SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are... Name them !

19 SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are... Name them !

20 SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are...

21 SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Supplementary

22 SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Name them ! Supplementary

23 SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Name them ! Supplementary

24 SOLREVIEWSOLREVIEW Proving ∆s Congruent

25 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

26 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

27 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB the reflexive side

28 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

29 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

30 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB alt. int. angles /reflexive side

31 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

32 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

33 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB the reflexive side

34 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC

35 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC

36 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC vertical angles

37 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

38 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB

39 SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB alt. int. angles /reflexive side

40 SOLREVIEWSOLREVIEW Angles of Regular Polygons ?

41 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6 Angles of Regular Polygons ?

42 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6 Angles of Regular Polygons ? 360˚ The answer for all polygons

43 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚ Angles of Regular Polygons ?

44 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚ Angles of Regular Polygons ? 360˚ 6 n

45 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚ Angles of Regular Polygons ? 60˚

46 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚ Angles of Regular Polygons ? 60˚ 60˚ + ? = 180˚ (Linear Pair of Angles)

47 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚ Angles of Regular Polygons ? 120˚

48 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚ Angles of Regular Polygons ? 120˚ (n)(120˚) (6)(120˚)

49 SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚720˚ Angles of Regular Polygons 120˚ (n)(120˚) (6)(120˚)

50 SOLREVIEWSOLREVIEW Similar Triangles

51 SOLREVIEWSOLREVIEW Since ∆ABC ∆EFG, then the scale factor of ∆ABC to ∆EFG is... ~

52 SOLREVIEWSOLREVIEW Similar Triangles Since ∆ABC ∆EFG, then the scale factor of ∆ABC to ∆EFG is... ~ 2 1 or 2:1

53 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~

54 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ E D C

55 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ Why are the triangles similar? E D C

56 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ AA Similarity Why are the triangles similar? E D C

57 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x

58 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x = AB DE BC DC small ∆ big ∆

59 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x = 8 x 7

60 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x = 8 x 7 (8)(18) = (7)(x) cross multiply

61 SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x = 8 x 7 (8)(18) = (7)(x) cross multiply 20.57 = x

62 SOLREVIEWSOLREVIEW Right Triangles

63 SOLREVIEWSOLREVIEW Pythagorean Thm. Special Right Triangles Trig.

64 SOLREVIEWSOLREVIEW Right Triangles Pythagorean Thm. a b c What is the formula?

65 SOLREVIEWSOLREVIEW Right Triangles Pythagorean Thm. a b c

66 SOLREVIEWSOLREVIEW Right Triangles Special Right Triangles

67 SOLREVIEWSOLREVIEW 45-45-90 45˚ 30-60-90 60˚ 30˚ Right Triangles Special Right Triangles

68 SOLREVIEWSOLREVIEW 45-45-90 45˚ 30-60-90 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?

69 SOLREVIEWSOLREVIEW 45-45-90 45˚ 30-60-90 x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?

70 SOLREVIEWSOLREVIEW 45-45-90 45˚ 30-60-90 x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?

71 SOLREVIEWSOLREVIEW 45-45-90 x x 45˚ 30-60-90 x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?

72 SOLREVIEWSOLREVIEW Right Triangles Trigonometry

73 SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective How are the sides labeled ?

74 SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective Hyp. Adj. Opp.

75 SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective Hyp. Adj. Opp. What are the 3 Trig. Ratios ?

76 SOLREVIEWSOLREVIEW Right Triangles Trigonometry Tan. = Opp. Adj. Cos. = Hyp. Adj. Sin. = Hyp. Opp. Angle of Perspective Hyp. Adj. Opp.

77 SOLREVIEWSOLREVIEW Circle Formulas Angles Segments

78 SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

79 SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

80 SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

81 SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

82 SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

83 SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

84 SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

85 SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

86 SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

87 SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

88 SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

89 SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

90 SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

91 SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.

92 SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

93 SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?

94 SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Chords What is the formula?

95 SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Chords What is the formula?

96 SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Secants What is the formula?

97 SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Secants What is the formula? or


Download ppt "SOLREVIEWSOLREVIEW THE GEOMETRY SOLs Use the arrow keys   to move forward or backward. ( in review )"

Similar presentations


Ads by Google