Download presentation
Presentation is loading. Please wait.
Published byMalcolm Phillips Modified over 8 years ago
1
SOLREVIEWSOLREVIEW THE GEOMETRY SOLs Use the arrow keys to move forward or backward. ( in review )
2
SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : =
3
SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: The Law of Syllogism C ontrapositive : “ If q then p. ” = I nverse:
4
SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” =
5
SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” “ If - q then - p. ” =
6
SOLREVIEWSOLREVIEW Conditional Statements “ If p then q. ” C onverse: I nverse: The Law of Syllogism C ontrapositive : “ If q then p. ” “ If - p then - q. ” “ If - q then - p. ” = The Transitive Property
7
SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )
8
SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )
9
SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )
10
SOLREVIEWSOLREVIEW Formulas : Slope = Midpoint = Distance = for two points (X 1, Y 1 ) and ( X 2, Y 2 )
11
SOLREVIEWSOLREVIEW Parallel Lines and Angles
12
SOLREVIEWSOLREVIEW Corresponding Angles are...
13
SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are...
14
SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are... Name them !
15
SOLREVIEWSOLREVIEW Parallel Lines and Angles Corresponding Angles are... Name them !
16
SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are...
17
SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are...
18
SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are... Name them !
19
SOLREVIEWSOLREVIEW Parallel Lines and Angles Alternate Interior Angles are... Name them !
20
SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are...
21
SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Supplementary
22
SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Name them ! Supplementary
23
SOLREVIEWSOLREVIEW Parallel Lines and Angles Consecutive Interior Angles are... Name them ! Supplementary
24
SOLREVIEWSOLREVIEW Proving ∆s Congruent
25
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB
26
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB
27
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB the reflexive side
28
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB
29
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB
30
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB alt. int. angles /reflexive side
31
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB
32
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB
33
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB the reflexive side
34
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC
35
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC
36
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABC ∆DEC vertical angles
37
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB
38
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB
39
SOLREVIEWSOLREVIEW Proving ∆s Congruent SSS SAS Choose a Method to Prove: ASA AAS HL ∆ABD ∆CDB alt. int. angles /reflexive side
40
SOLREVIEWSOLREVIEW Angles of Regular Polygons ?
41
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6 Angles of Regular Polygons ?
42
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6 Angles of Regular Polygons ? 360˚ The answer for all polygons
43
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚ Angles of Regular Polygons ?
44
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚ Angles of Regular Polygons ? 360˚ 6 n
45
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚ Angles of Regular Polygons ? 60˚
46
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚ Angles of Regular Polygons ? 60˚ 60˚ + ? = 180˚ (Linear Pair of Angles)
47
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚ Angles of Regular Polygons ? 120˚
48
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚ Angles of Regular Polygons ? 120˚ (n)(120˚) (6)(120˚)
49
SOLREVIEWSOLREVIEW nSum of Ext. <s Each Ext. < Each Int. < Sum of Int. <s 6360˚60˚120˚720˚ Angles of Regular Polygons 120˚ (n)(120˚) (6)(120˚)
50
SOLREVIEWSOLREVIEW Similar Triangles
51
SOLREVIEWSOLREVIEW Since ∆ABC ∆EFG, then the scale factor of ∆ABC to ∆EFG is... ~
52
SOLREVIEWSOLREVIEW Similar Triangles Since ∆ABC ∆EFG, then the scale factor of ∆ABC to ∆EFG is... ~ 2 1 or 2:1
53
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~
54
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ E D C
55
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ Why are the triangles similar? E D C
56
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ AA Similarity Why are the triangles similar? E D C
57
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x
58
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x = AB DE BC DC small ∆ big ∆
59
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x = 8 x 7
60
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x = 8 x 7 (8)(18) = (7)(x) cross multiply
61
SOLREVIEWSOLREVIEW Similar Triangles ∆ABC ∆ _ _ _ ~ If AB = 8, AC = 5, BC = 7, CD = 18 then find DE. E D C 8 5 7 18 x = 8 x 7 (8)(18) = (7)(x) cross multiply 20.57 = x
62
SOLREVIEWSOLREVIEW Right Triangles
63
SOLREVIEWSOLREVIEW Pythagorean Thm. Special Right Triangles Trig.
64
SOLREVIEWSOLREVIEW Right Triangles Pythagorean Thm. a b c What is the formula?
65
SOLREVIEWSOLREVIEW Right Triangles Pythagorean Thm. a b c
66
SOLREVIEWSOLREVIEW Right Triangles Special Right Triangles
67
SOLREVIEWSOLREVIEW 45-45-90 45˚ 30-60-90 60˚ 30˚ Right Triangles Special Right Triangles
68
SOLREVIEWSOLREVIEW 45-45-90 45˚ 30-60-90 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?
69
SOLREVIEWSOLREVIEW 45-45-90 45˚ 30-60-90 x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?
70
SOLREVIEWSOLREVIEW 45-45-90 45˚ 30-60-90 x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?
71
SOLREVIEWSOLREVIEW 45-45-90 x x 45˚ 30-60-90 x 2x 60˚ 30˚ Right Triangles Special Right Triangles What’s the pattern ?
72
SOLREVIEWSOLREVIEW Right Triangles Trigonometry
73
SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective How are the sides labeled ?
74
SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective Hyp. Adj. Opp.
75
SOLREVIEWSOLREVIEW Right Triangles Trigonometry Angle of Perspective Hyp. Adj. Opp. What are the 3 Trig. Ratios ?
76
SOLREVIEWSOLREVIEW Right Triangles Trigonometry Tan. = Opp. Adj. Cos. = Hyp. Adj. Sin. = Hyp. Opp. Angle of Perspective Hyp. Adj. Opp.
77
SOLREVIEWSOLREVIEW Circle Formulas Angles Segments
78
SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.
79
SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.
80
SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?
81
SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?
82
SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.
83
SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.
84
SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?
85
SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?
86
SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.
87
SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.
88
SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?
89
SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?
90
SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.
91
SOLREVIEWSOLREVIEW Circle Formulas Angles Name the type of angle.
92
SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?
93
SOLREVIEWSOLREVIEW Circle Formulas Angles What is the formula?
94
SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Chords What is the formula?
95
SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Chords What is the formula?
96
SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Secants What is the formula?
97
SOLREVIEWSOLREVIEW Circle Formulas Segments Intersecting Secants What is the formula? or
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.