Download presentation
Presentation is loading. Please wait.
Published byIrma Kennedy Modified over 9 years ago
1
Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD The principle of virtual work Paris Châlons en Champagne
2
or Equilibrium equations (static) + boundary conditions strong (local) weak (global) Valid for any KA virtual fields
3
Illustration of the PVW Section S F e1e1 e2e2 l L0L0
4
Over element 1 1F1F1 1 2 3 Local equilibrium:
5
21 Forces exerted by 2 over 1 F e1e1 e2e2 Section S L 0 -x 1
6
Resultant of internal forces 1 F1F1 21 F e1e1 e2e2 Section S L 0 -x 1
7
Equilibrium
8
Valid over any section S of the beam: integration over x 1 Eq. 1 Eq. 2 Eq. 3
9
Principle of virtual work (static, no volume forces) Let us write a virtual field: e1e1 F e2e2 L0L0 l
10
Eq. 1 e1e1 F e2e2 L0L0 l
11
Let us write another virtual field: F e1e1 e2e2 L0L0 l
12
Eq. 2 F e1e1 e2e2 L0L0 l
13
F e1e1 e2e2 L0L0 l Let us write a 3rd field: virtual bending
14
Eq. 3 F e1e1 e2e2 L0L0 l
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.