Download presentation
Presentation is loading. Please wait.
Published byVirgil Wells Modified over 9 years ago
1
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL
2
High energy ’ s: A new window MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse) physics >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic) sources [10kt @ 1MeV 1Gton @ TeV, TeV / MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp ’s ’s] physics
3
The 10 20 eV challenge R B v v 2R t RF =R/ c) l =R/ 22 22 [Waxman 95, 04, Norman et al. 95] AGN (Steady): ~ 10 1 L>10 14 L Sun few brightest ~1/100 Gpc 3 d >> 100Mpc ?? AGN flares GRB (transient): ~ 10 2.5 L>10 17 L Sun L ~ 10 18 L Sun [Farrar & Gruzinov 08] [Blandford 76; Lovelace 76] [Waxman 95, Vietri 95, Milgrom & Usov 95]
4
GRB: 10 20 L Sun, M BH ~1M sun, M~1M sun /s, ~10 2.5 AGN: 10 14 L Sun, M BH ~10 9 M sun, M~1M sun /yr, ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr, ~10 0.5 Source physics Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms
5
Clues: CR phenomenology Cosmic-ray E [GeV] log [dJ/dE] 1 10 6 10 E -2.7 E -3 Heavy Nuclei Protons Flattening, Near isotropy, Heavy light (?) Galactic heavy (“hypernovae” Z~10 to 10 19 eV) X-Galactic, ?Light [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]
6
Constraints: Flux & Spectrum [Waxman 1995; Bahcall & Waxman 03] [Kashti & Waxman 08] E sys /E~20% Particle acc.; SFR, AGN, GRB [Berezinsky et al. 08]
7
Clues: Anisotropy Galaxy density integrated to 75Mpc CR intensity map ( source ~ gal ) [Waxman, Fisher & Piran 1997] Biased ( source ~ gal for gal > gal ) [Kashti & Waxman 08] Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Few fold increase >99% CL, but not 99.9% CL Correlation with AGN ? VCV catalogue: 99% CL Swift catalogue: 84% (98% a posteriori) CL low-luminosity AGN? Simply trace LSS! [Auger collaboration 07] [George et al. 08]
8
>10 19 eV cosmic rays: Clue summary Spectrum (+X max ) likely X-Galactic protons Anisotropy + Spectrum likely “ Conventional ” sources L constraint likely Transient sources E p 2 dN/dE p ~ 0.7x10 44 erg/Mpc 3 yr What next for Auger? Identify (narrow spectrum) point source(s)?
9
HE Astronomy p + N + 0 2 ; + e + + e + + Identify UHECR sources Study BH accretion/acceleration physics E 2 dn/dE=10 44 erg/Mpc 3 yr + p <1: If X-G p ’ s: Identify primaries, determine f(z) [Waxman & Bahcall 99; Bahcall & Waxman 01]
10
AGN models?? BBR05
11
Experiments Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km 3 IceCube: +660/yr OM (05/06, 06/07) 4800 OM=1 km 3 s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0.05 km 3 Nestor: (?) 0.1 km 3 km3Net: R&D 1 km 3 UHE: Radio Air shower Aura, Ariana (in Ice) Auger ( ) ANITA (Balloon) EUSO (?) LOFAR
12
Generic GRB fireball ’ s If: Baryonic jet, internal shocks (Weak dependence on model parameters) Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]
13
The current limit [Achterberg et al. 07 (The IceCube collaboration)]
14
- physics & astro-physics decay e : : = 1:2:0 (Osc.) e : : = 1:1:1 appearance experiment GRBs: - timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of ’ s (and ’ s) e : : = 1:1:1 (E>E 0 ) 1:2:2 GRBs: E 0 ~10 15 eV Combining E E 0 flavor measurements may constrain CPV [Sin 13 Cos ] [Waxman & Bahcall 97] [Rachen & Meszaros 98; Kashti & Waxman 05] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & Waxman 05]
15
Outlook Particle+Astro-phys. Open Q ’ s - >10 11 GeV particles: primaries, f(z), origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ … ) Energy extraction from BH accretion Relativistic plasma physics - “ Conventional ” astrophysics (starburst ISM) - appearance Timing LI to 1:10 16 ; WEP to 1:10 6 Flavor ratios CPV New HE , CR and detectors >10 3 km 2 hybrid >10 19 eV CR detectors ~1 km 3 (=1Gton) 1-1000TeV detectors >>1 km 3 [radio, … ] >>1000TeV detectors 10MeV—10GeV -ray satellite (AGILE, GLAST) >0.1TeV (ground based) -ray telescopes (Milagro, HESS, MAGIC, VERITAS) Identified point sources Diffuse
16
Composition clues HiRes 2005
17
GRB proton/electron acceleration Electrons MeV ’ s: <1: e - ( ) spectrum: e - ( ) energy production [Waxman 95, 04] Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production:
18
The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV B =(B 2 /8 nT~0.01 (B~0.01 G), B ~10kpc Prediction: p D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]
19
GRB Model Predictions [Miralda-Escude & Waxman 96]
21
AMANDA & IceCube
22
The Mediterranean effort ANTARES (NESTOR, NEMO) KM3NeT
23
Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler M82 M81
24
A lower bound: Star bursts Star burst galaxies: - Star Formation Rate ~10 3 M sun /yr >> 1 M sun /yr “ normal ” (MW) - Density ~10 3 /cc >> 1/cc “ normal ” - B ~1 mG >> 1 G “ normal ” Most stars formed in (z>1.5) star bursts High density + B: CR e - ’ s lose all energy to synchrotron radiation CR p ’ s lose all energy to production [Loeb & Waxman 06] [Quataert et al. 06]
25
Synchrotron radio calibration [Loeb & Waxman 06]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.