Presentation is loading. Please wait.

Presentation is loading. Please wait.

Formal Languages Finite Automata Dr.Hamed Alrjoub 1FA1.

Similar presentations


Presentation on theme: "Formal Languages Finite Automata Dr.Hamed Alrjoub 1FA1."— Presentation transcript:

1 Formal Languages Finite Automata Dr.Hamed Alrjoub 1FA1

2 2 Wikipedia Chomsky Hierarchy FA1

3 3 Finite Automaton Input “Accept” or “Reject” String Finite Automaton Output FA1

4 4 Transition Graph initial state accepting state transition FA1

5 5 Initial Configuration Input String FA1

6 6 Reading the Input FA1

7 7

8 8

9 9

10 10 accept Input finished FA1

11 11 Rejection FA1

12 12 FA1

13 13 FA1

14 14 FA1

15 15 reject Input finished FA1

16 16 Acceptance or Rejection? FA1

17 17 Initial State FA1

18 18 reject Rejection FA1

19 19 Language? FA1

20 20 Another Example FA1

21 21FA1

22 22FA1

23 23FA1

24 24 accept Input finished FA1

25 25 Rejection Example FA1

26 26FA1

27 27FA1

28 28FA1

29 29 reject Input finished FA1

30 30 Languages Accepted by FAs FA Definition: The language contains all input strings accepted by = { strings that bring to an accepting state} FA1

31 31 Example: L(M) = ? accept FA1

32 32 Example accept FA1

33 33 Example: L(M) = ? accept FA1

34 34 Example accept FA1

35 35 Example: L(M) = ? accept trap state FA1

36 36 Example accept trap state FA1

37 37 Formal Definition Finite Automaton (FA) : set of states : input alphabet : transition function : initial state : set of accepting states FA1

38 38 Input Alphabet FA1

39 39 Set of States FA1

40 40 Initial State FA1

41 41 Set of Accepting States FA1

42 42 Transition Function FA1

43 43 FA1

44 44 FA1

45 45FA1

46 46 Transition Function FA1

47 47 Extended Transition Function FA1

48 48FA1

49 49FA1

50 50FA1

51 51 Observation: if there is a walk from to with label then FA1

52 52 Example: There is a walk from to with label FA1

53 53 Recursive Definition FA1

54 54 FA1

55 55 Language Accepted by FAs For a FA Language accepted by : FA1

56 56 Observation Language rejected by : FA1

57 57 L(M) ? accept FA1

58 58 Example = { all strings with prefix } accept FA1

59 59 L(M)? FA1

60 60 Example = { all strings without substring } FA1

61 61 L(M) ? FA1

62 62 Example FA1

63 63 Regular Languages Definition: A language is regular if there is FA such that Observation: All languages accepted by FAs form the family of regular languages FA1

64 64 { all strings with prefix } { all strings without substring } Examples of regular languages: There exist automata that accept these Languages (see previous slides). FA1

65 65 There exist languages which are not Regular: There is no FA that accepts such a language (we will prove this later in the class) Example: FA1


Download ppt "Formal Languages Finite Automata Dr.Hamed Alrjoub 1FA1."

Similar presentations


Ads by Google