Download presentation
Presentation is loading. Please wait.
Published byDortha Sherman Modified over 8 years ago
1
MPI Metorology comparing ISCCP and GEWEX products Madison, July 2006 Stefan Kinne Max Planck Institute for Meteorology Hamburg, Germany Ehrhard Raschke University of Hamburg Hamburg, Germany
2
MPI-M overview available long-term global data-sets for radiative fluxes at the Top of Atmosphere (ToA) at the surface (sur) concept on investigating consistency assessments of solar flux comparisons assessments of infrared flux comparisons recommendations
3
MPI-M Earth’s radiation budget how accurate defined is the radiation budget of our climate system? know your clouds … size-distribution (z) cover (z) know ancillary data … surface + s-processes anthop. influences …on regional and seasonal scales
4
MPI-M 2 long-term data-sets describe radiation budgets at ToA and surface ISCCP GOAL: extract data on cloud field characteristics from operational meteorological satellite sensors years: 1983-2004, res: 250km (spatial), 3hr (temp) processedC at NASA-GISS (Rossow, Zhang) GEWEX-SRB GOAL: determine radiation budgets at the surface years: 1983-2004, res: 100km (spatial), daily (temp) processed at NASA-Langley (Stackhouse) clouds properties are ‘based‘ on the ISCCP climatology !
5
MPI-M task at hand two bb-flux data sets for same time-period based on the same cloud data we should expect similar (if not the same) data let’s test that stratify data into zonal bands of monthly means display differences (always ISCCP minus GEWEX) interpret differences and highlight issues
6
MPI-M regional temporal choices 75-90N (1.7%) 60-75N (5.0%) 30-60N (18.3%) 0-30N (25.0%) 0-30S (25.0%) 30-60N (18.3%) 60-75N (5.0%) 75-90N (1.7%) use monthly averages
7
MPI-M solar fluxes solar ToA the ‘solar’ driver solar surface solar atm. transmittance solar / surface surface albedo solar / ToA planetary albedo typical plot: timeseries of monthly averages diff.colors for diff.latitude zones ISCCP - GEWEX deviation Time (starting in 1983)
8
MPI-M ISCCP – GEWEX sol toa DECEMBER 2005 WHY DEVIATIONS ? simplified treatment of GEWEX solar insolation at low sun-elevations for the record: larger deviations are gone In new GEWEX data
9
MPI-M conclusion # 1 un-necessary deviation for ‘solar driver’ low sun, avg ( lat, t) also an issue in global modeling IPCC-4AR use consistent routines for ToA insolation ! agree on orbit and S o implement properly! spat/temp integration solar insolation of IPCC models
10
MPI-M ISCCP – GEWEX sol sur text
11
MPI-M ISCCP – GEWEX sol sur text at surface: differences among data-sets are larger ! high lat. peaks are out phase to ToA peaks TOA a cloud issue !
12
MPI-M conclusion # 2 ‘sol ToA’ differences are lost at ‘sol surface’ and ‘sol surface’ differences are larger (!) differences in atmospheric properties dominate larger differences (season dep.) at higher latitudes most probable explanation diff. in cloud-cover / cloud opt.depth (for data-sets) assessment: cloud cover / optical depth differ ! ‘cloud’ differences have a seasonal dependence GEWEX cloud (opt. depth/cover) impact is stronger especially during polar summers (particularly in SH) (… yet weaker during mid-latitude summer in SH)
13
MPI-M ISCCP – GEWEX sol / sur largest differences during NH mid-lat winters - at high latitudes (not shown) even worse ! a snow issue !
14
MPI-M conclusion # 3 solar surface albedo in models differs differences have a seasonal dependence sign of diff. varies between high and low latitudes largest differences are linked to snow (alb. / cover) GEWEX has smaller solar surface albedos at higher latitudes especially in seasons, when snow can be expected … yet larger solar surface albedos in the tropics assessment on solar surface albedo: accuracy and consistency of ancillary (non-cloud data) data matters !
15
MPI-M ISCCP - GEWEX sol / toa text a combination of all previous biases
16
MPI-M conclusion # 4 diff. in plantetary albedo display combined effect solar insolation biases solar surface albedo atmospheric properties (especially those of clouds) potential for offsetting errors planetary albedo at ToA differences surface albedo diff. at mid/ high lat. are modulated as expected by cloud impact based on solar transm. - except for tropics: GEWEX clouds less reflective! assessment: cloud microphysics differ
17
MPI-M infrared IR surface[emission]surf. temp effect IR surface(low) cloud effect IR at ToA[OLR](high) cloud effect ISCCP - GEWEX deviation typical plot: timeseries of monthly averages diff.colors for diff.latitude zones Time (starting in 1983)
18
MPI-M ISCCP – GEWEX ir sur text
19
MPI-M ISCCP – GEWEX ir sur text can this trend be detected at - ir sur ? - ir toa ? ‘false’ trend due to the use of incorrect surface temperature data for ISCCP in the tropics
20
MPI-M ISCCP – GEWEX ir sur there NO: atm. effects (clouds) dominate
21
MPI-M ISCCP-GEWEX ir toa text NO: atm. effects (clouds) dominate
22
MPI-M ISCCP-GEWEX ir toa/sur text toa sur lower GEWEX opt.depth/cover higher GEWEX opt.depth/cover
23
MPI-M conclusion # 5 atmospheric properties are main IR modulators surface emission differences vs OLR differences usually consistent with cloud (opt.depth/cover) bias … though not always ! cloud boundary temperatures matter atm. temp. profile or altitude placement of cloud? assessment: cloud altitude placement differs other important ancillary data: surface temperature / atm. temperature profile
24
MPI-M conclusions ISCCP and GEWEX radiations products often disagree on cloud and ancillary data significant difference for cloud properties surprise, given the same cloud data-source larger disagreements at high-latitudes potential offsets can dilute severity of problem careful validation to quality data are needed ground-based network (BSRN) ? use synergy of advanced space sensors (A-train) collaboration of data/analyzing groups needed
25
MPI-M recommendations develop a reference algorithm for ToA solar insolation Earth’s orbital data, solar constant, low sun elevation issue re-evaluate cloud properties and ancillary data (T, snow) compare to in-situ and ground-based quality data identify systematic diff. on regional / seasonal scales treat cloud and ancillary data in a consistent manner implementation ( … to suit model / data-set resolution) document your steps ! supply complete and detailed explanations on assumptions and methods – including a brief summary to allow a hasty user to understand major characteristics and error sources.
26
MPI-M
27
extras solar downward surface flux ‘trend’ solar transmission ratio and ‘trend’ solar planetary ‘trend’ / ‘trend’ differences infrared surf emission ‘trend’ / ‘trend’ differences infrared outgoing ir flux ‘trend’ differences all-sky vs. clear-sky: the cloud effect
28
MPI-M
29
ISCCP – GEWEX sol sur text MAY 2006 high latitudes only
30
MPI-M ISCCP sol sur text MAY 2006 lower latitudes
31
MPI-M GEWEX sol sur text lower latitudes MAY 2006
32
MPI-M
33
ISCCP/GEWEX sol ( sur/ toa) text
34
MPI-M ISCCP/GEWEX sol ( sur/ toa) text
35
MPI-M GEWEX sol ( sur / toa) text
36
MPI-M
37
ISCCP – GEWEX sol / toa text lower latitudes
38
MPI-M ISCCP – GEWEX sol / toa text high latitudes
39
MPI-M ISCCP sol / toa text
40
MPI-M GEWEX sol / toa text
41
MPI-M
42
ISCCP – GEWEX ir sur text
43
MPI-M ISCCP ir sur text
44
MPI-M
45
ISCCP-GEWEX ir toa text lower latitudes
46
MPI-M ISCCP – GEWEX ir toa text high latitudes
47
MPI-M
48
ISCCP-GEWEX cld effect sol sur text
49
MPI-M ISCCP cloud effect sol / toa text
50
MPI-M ISCCP cloud effect ir toa text
51
MPI-M ISCCP 91-95 sol+ir toa text Raschke et al., Int.J. Clim. 2005
52
MPI-M ISCCP 91-95 sol+ir atm text Raschke et al., Int.J. Clim. 2005
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.