Download presentation
Presentation is loading. Please wait.
Published byViolet Cooper Modified over 9 years ago
1
1.1 - Functions
2
Ex. 1 Describe the sets of numbers using set- builder notation. a. {8,9,10,11,…}
3
Ex. 1 Describe the sets of numbers using set- builder notation. a. {8,9,10,11,…} {x|x > 8, x E W}
4
Ex. 1 Describe the sets of numbers using set- builder notation. a. {8,9,10,11,…} {x|x > 8, x E W} b. x < 7
5
Ex. 1 Describe the sets of numbers using set- builder notation. a. {8,9,10,11,…} {x|x > 8, x E W} b. x < 7 {x|x < 7, x E R}
6
Ex. 1 Describe the sets of numbers using set- builder notation. a. {8,9,10,11,…} {x|x > 8, x E W} b. x < 7 {x|x < 7, x E R} c. All multiples of three
7
Ex. 1 Describe the sets of numbers using set- builder notation. a. {8,9,10,11,…} {x|x > 8, x E W} b. x < 7 {x|x < 7, x E R} c. All multiples of three {x|x = 3n, n E R}
8
Ex. 2 Write each set of numbers using interval notation. a. -8 < x < 16
9
Ex. 2 Write each set of numbers using interval notation. a. -8 < x < 16 (-8,16]
10
Ex. 2 Write each set of numbers using interval notation. a. -8 < x < 16 (-8,16] b. x < 11
11
Ex. 2 Write each set of numbers using interval notation. a. -8 < x < 16 (-8,16] b. x < 11 (-∞, 11)
12
Ex. 2 Write each set of numbers using interval notation. a. -8 < x < 16 (-8,16] b. x < 11 (-∞, 11) c. x 5
13
Ex. 2 Write each set of numbers using interval notation. a. -8 < x < 16 (-8,16] b. x < 11 (-∞, 11) c. x 5 (-∞, 16] U (5, ∞)
14
Ex. 3 Determine whether each relation represents y as a function of x. a. He input value x is a student’s ID number and the output value y is that student’s score on a physics exam.
15
Ex. 3 Determine whether each relation represents y as a function of x. a. He input value x is a student’s ID number and the output value y is that student’s score on a physics exam. YES
16
Ex. 3 Determine whether each relation represents y as a function of x. a. He input value x is a student’s ID number and the output value y is that student’s score on a physics exam. YES b. Tables
17
c. Graphs d. y 2 – 2x = 5y – 2x 2 = 5
18
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3)
19
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3) f(x) = 3x – 5
20
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3) f(x) = 3x – 5 f(-3) = 3(-3) – 5
21
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3) f(x) = 3x – 5 f(-3) = 3(-3) – 5 = -9 – 5 = -14
22
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3) f(x) = 3x – 5 f(-3) = 3(-3) – 5 = -9 – 5 = -14 (b) g(2z)
23
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3) f(x) = 3x – 5 f(-3) = 3(-3) – 5 = -9 – 5 = -14 (b) g(2z) g(x) = x 2 + 2
24
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3) f(x) = 3x – 5 f(-3) = 3(-3) – 5 = -9 – 5 = -14 (b) g(2z) g(x) = x 2 + 2 g(2z) = (2z) 2 + 2
25
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3) f(x) = 3x – 5 f(-3) = 3(-3) – 5 = -9 – 5 = -14 (b) g(2z) g(x) = x 2 + 2 g(2z) = (2z) 2 + 2 = (2) 2 (z) 2 + 2
26
Ex. 4 Given f(x) = 3x – 5 and g(x) = x 2 + 2, find: (a) f(-3) f(x) = 3x – 5 f(-3) = 3(-3) – 5 = -9 – 5 = -14 (b) g(2z) g(x) = x 2 + 2 g(2z) = (2z) 2 + 2 = (2) 2 (z) 2 + 2 = 4z 2 + 2
27
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4
28
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4 x + 4 > 0
29
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4 x + 4 > 0 x > -4
30
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4 x + 4 > 0 x > -4 Domain: { x | x > -4}
31
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4 x + 4 > 0 x > -4 Domain: { x | x > -4} b. f(x) = 2 + x x 2 – 7x
32
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4 x + 4 > 0 x > -4 Domain: { x | x > -4} b. f(x) = 2 + x x 2 – 7x x 2 – 7x ≠ 0
33
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4 x + 4 > 0 x > -4 Domain: { x | x > -4} b. f(x) = 2 + x x 2 – 7x x 2 – 7x ≠ 0 x(x – 7) ≠ 0
34
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4 x + 4 > 0 x > -4 Domain: { x | x > -4} b. f(x) = 2 + x x 2 – 7x x 2 – 7x ≠ 0 x(x – 7) ≠ 0 x ≠ 0x ≠ 7
35
Ex. 5 Identify the domain & range of each function. a. y = √ x + 4 x + 4 > 0 x > -4 Domain: { x | x > -4} b. f(x) = 2 + x x 2 – 7x x 2 – 7x ≠ 0 x(x – 7) ≠ 0 x ≠ 0x ≠ 7 Domain: { x | x ≠ 0, x ≠ 7, x E R}
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.