Download presentation
Presentation is loading. Please wait.
Published byJustina Cain Modified over 9 years ago
1
Thermodynamics of abstract composition rules Product, addition, logarithm Abstract composition rules, entropy formulas and generalizations of the Boltzmann equation Application: Lattice SU2 with fluctuating temperature T.S.Biró, MTA KFKI RMKI Budapest Talk given at Zimányi School, Nov. 30. – Dec. 4. 2009, Budapest, Hungary Thanks to: G.Purcsel, K.Ürmössy, Zs.Schram, P.Ván
2
Non-extensive Thermodynamics The goal is to describe: statistical macro-equilibrium irreversible properties of long-range correlated (entangled) systems
3
Non-extensive Thermodynamics The goal is to describe: statistical macro-equilibrium irreversible properties of long-range correlated (entangled) systems
4
Non-extensive Thermodynamics Generalizations done (more or less): entropy formulas kinetic eq.-s: Boltzmann, Fokker-Planck, Langevin composition rules Most important: fat tail distributions canonically
5
Applications (fits) galaxies, galaxy clusters anomalous diffusion (Lévy flight) turbulence, granular matter, viscous fingering solar neutrinos, cosmic rays plasma, glass, spin-glass superfluid He, BE-condenstaion hadron spectra liquid crystals, microemulsions finance models tomography lingustics, hydrology, cognitive sciences
7
Logarithm: Product Sum additive extensive
8
Abstract Composition Rules EPL 84: 56003, 2008
9
Repeated Composition, large-N
10
Scaling law for large-N
11
Formal Logarithm
12
Asymptotic rules are associative and attractors among all rules…
13
Asymptotic rules are associative
14
Associative rules are asymptotic
15
Scaled Formal Logarithm
16
Deformed logarithm Deformed exponential
17
Formal composition rules Differentiable rules Asymptotic rules Associative rules Formal Logarithm 1.General rules repeated infinitely asymptotic rules 2.Asymptotic rules are associative 3.Associative rules are self-asymptotic 4.For all associative rules there is a formal logarithm mapping it onto the simple addition 5.It can be obtained by scaling the general rule applied for small amounts
18
Entropy formulas, distributions Boltzmann – Gibbs Rényi Tsallis Kaniadakis … EPJ A 40: 325, 2009
19
Entropy formulas from composition rules Joint probability = marginal prob. * conditional prob. The last line is for a subset
20
Entropy formulas from composition rules Equiprobability: p = 1 / N Nontrivial composition rule at statistical independence
21
Entropy formulas from composition rules 1. Thermodynamical limit: deformed log
22
Entropy maximum at fixed energy
23
Canonical distribution The fit value of T = 1 / β correlates to that of the non-extensivity parameter ‘a’
24
Generalized kinetic theory
25
Boltzmann algorithm: pairwise combination + separation With additive composition rule at independence: Such rules generate exponential distribution
26
Boltzmann algorithm: pairwise combination + separation With associative composition rule at independence: Such rules generate ‘exponential of the formal logarithm’ distribution
27
Generalized Stoßzahlansatz
28
General H theorem
29
General H theorem: entropy density formula
30
Detailed balance: G = G 12 34
31
Detailed balance: G = G 12 34
32
Detailed balance: proof
33
Examples for composition rules
34
Example: Gibbs-Boltzmann
35
Example: Rényi, Tsallis
36
Example: Einstein
37
Example: Non associative
38
Important example: product class
39
QCD is like this!
40
Relativistic energy composition
41
( high-energy limit: mass ≈ 0 )
42
Asymptotic rule for m=0
43
Physics background: q > 1 q < 1 Q²Q² α
44
Simulation using non-additive rule Non-extensive Boltzmann Equation (NEBE) : Rényi-Tsallis energy addition rule random momenta accordingly pairwise collisions repeated momentum distribution collected with Gábor PurcselPRL 95: 162302, 2005
45
Evolution in NEBE phase space
46
Stationary energy distributions in NEBE program x + yx + y + 2 x y
47
Thermal equilibration in NEBE program
48
Non-extensive spectra: quark and hadron level Check quark coalescence scaling 2:3 Assume that T,q stem from quark matter Assume that hadronization is rapid Assume a transverse blast wave Result: Quark number scaling for (q-1) with. Károly Ürmössy EPJ A 40:325,2009
49
Tsallis quark matter + transverse flow + quark coalescence fits to hadron spectra SQM 2008, Beijing
50
Tsallis quark matter + transverse flow + quark coalescence fits to hadron spectra SQM 2008, Beijing
51
Blast wave fits and quark coalescence SQM 2008, Beijing
52
Non-extensive spectra: hadron level Scaling variable for p_T dependence T,q for each particle universality? Assume a transverse blast wave (for high-p_T it is ok) Result: Hadronic T,q and v parameters with. Károly Ürmössy work in progress
53
Scaling variable E or X(E)? Károly Ürmössy
54
Scaling variable E or X(E)? Károly Ürmössy
55
Microscopic theory in non-extensive approach: questions, projects,... Ideal gas with deformed exponentials Boltzmann and Bose distribution Fermi distribution: ptl – hole effect Thermal field theory with stohastic temperature Lattice SU(2) with Gamma * Metropolis method
56
Limiting temperature with Tsallis distribution Hagedorn Massless particles, 3-dim. momenta, N-fold For N 4: Tsallis partons Hagedorn states ( with A. Peshier, Giessen ) PLB 632:247,2006 If it were a ~ 1/T there would not be a limiting T !!!
57
As if temperature fluctuated… EulerGamma Boltzmann = Tsallis EulerGamma Poisson = Negative Binomial
58
max: 1 – 1/c, mean: 1, spread: 1 / √ c Euler - Gamma distribution
59
Tsallis lattice EOS Tamás S. Bíró (KFKI RMKI Budapest) and Zsolt Schram (DTP ATOMKI Debrecen) Lattice action with superstatistics Ideal gas with power-law tails Numerical results on EOS
60
Lattice theory A = DU dt w (t) e t A(U) ∫ ∫ -S(t,U) c DU dt w (t) e ∫ ∫ -S(t,U) c v Expectation values of observables: t = a / a asymmetry parameter ts Action: S(t,U) = a(U) t + b(U) / t
61
Su2 Yang-Mills eos on the lattice with Euler-Gamma distributed inverse temperature: Effective action method preliminary with Zsolt Schram (work in progress)
62
Method: EulerGamma * Metropolis asymmetry thrown from Euler-Gamma at each Monte Carlo step / only after a while at each link update / only for the whole lattice meaning local / global fluctuation in space c = 1024 for checking usual su2 c = 5.5 for genuine quark matter
65
Ratio
67
e / T4
68
(e-3p) / T4
69
Ideal Tsallis-Bose gas For c = 5.5 we have 1 / a = 4.5 and e ≈ 4 e_0
70
Summary Non-extensive thermodynamics is not only derivable from composition rules, but it is realized by QCD interactions in the high- energy limit and can be seen in heavy-ion collisions!
71
Topical Review Issue of EPJ A
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.