Download presentation
Presentation is loading. Please wait.
Published byIsaac O’Neal’ Modified over 9 years ago
1
Z0/γ*( l + l - )+jet Made in LANL Paul Constantin, Gerd Kunde, Camelia Mironov Signal Background Miscellaneous NEXT Camelia Mironov Introduction Signal Background Conclusions, applause, flowers etc. Dilepton Tagged Jets via Angular Correlations Made in LANL (with P. Constantin & G.J. Kunde)
2
2 p+p : z=p T associated /p T trigger Fragmentation function: A+A : distribution of particles associated with a trigger after medium modification have to disentangle the ‘jet’ component from the global ‘flow’ Azimuthal Correlations: h+h CARTOO N flow+jet jet C(ΔΦ) flow BKG = B(1+2v 2 (p T asso )v 2 (p T trig )cos(2 )) p+p A+A Back side Same side Trigger Particle Associated Particles hPt hadorn tagged (triggered) jet
3
3 Azimuthal Correlations: Z0/γ*+jet no flow for dilepton flat global background p T jet ~ p T Z0/γ* jet energy determined no ambiguities (π 0 ->2γ, η etc) like in γ+jet BKG = B(1+2v 2 (p T asso )v 2 (p T trig )cos(2 )) The DILEPTON is the tag
4
4 Theory: γ+jet Wang, Huang, Sarcevic PRL 77, 231 (1996) Wang, Huang PRC 55, 3047 (1997) Energy loss models (GLV, BDMS etc) connect partonic energy loss to fundamental properties of the medium – gluon density, system size etc z = p T /p jet measure D(z) in pp and AA λ a (parton inelastic scattering mean free path) dE a /dx (parton energy loss) Arleo et al (hep-ph/0410088), Arleo(hep-ph/0601075): γ-π 0 and γ-γ correlations medium modified fragmentation functions
5
5 PYTHIA Signal at LHC =5.5TeV Mass_γ* >12GeV (default) |η| <3.0 PYTHIA v6.326
6
6 PYTHIA Signal at LHC =5.5TeV Luminosity = 0.5 (mbs) -1 Run time = 10 6 (s) (2 weeks) ~NUMBERS: Z(pT>50 GeV/c) ~790
7
7 Cross-check for the PYTHIA number … Campbell and Maltoni: cross sections at NLO == MCFM (http://mcfm.fnal.gov) BR*Lumi*runTime*A^2 ~720 Z0 with pT>50GeV/c
8
8 PYTHIA Z0 Signal ΔΦ vs p T dilepton z vs p T dilepton z=p T hadron /p T dilepton
9
9 Heavy quarks and their semi-leptonic decay channels Background | | | | | | | | __| | | |__ ____ | |_____ BR(D --> lxy) ≈ 6.7% BR(B --> lxy) ≈ 10.2%
10
10 Signal & Background : Theory Gale, Srivastava,Awes nucle-th/0212081
11
11 Understanding background: theory NLO (HVQMNR) (Mangano, Nason, Ridolfi hep-th/xxxxx) PYTHIA total CERN yellow report on heavy flavor production: hep-ph/0311048
12
12 My MNR: ΔΦ(ccbar) Distribution pT(ccbar)>20GeV/c Pt(ccbar)>150GeV/c ccbar: independent trend in ΔΦ with increasing the momentum
13
13 My MNR: ΔΦ(bbbar) Distribution pT(bbbar)>20GeV/cpT(bbbar)>150GeV/c bbbar: change in ΔΦ when increasing the momentum cut
14
14 Reduce Background comon sense: DCA cut on displaced lepton track …understand background first!! vtx dca p lepton p meson lepton = e ±, μ ± meson = D ±, B ± (0,0,0) Profile histogram (value=mean, bars=rms) Dca(mm) 3<p lepton <5 GeV/c 5<p lepton <7 GeV/c 7<p lepton <10 GeV/c 10<p lepton <13 GeV/c
15
15 If we assume a dca resolution in σ rφ ~20μm and σ z ~50μm Statistical error bars can identify (reject) ~80% of the heavy background pT dependent trend? Reduce background: DCA
16
16 Before the end … Use a weakly interacting probe (Z0/γ*(l+l-)+jet) to tackle the properties of a strong interacting medium weak is good (this time) Advantages over ‘traditional’ h-h, γ-h analyses: no flow, no high pT limit etc. ‘Smallish’ rates you can’t have everything (rates, high pT reach and purity) in life La vita seems to be bella nevertheless …
17
17 The End
18
18
19
19 Z0/γ* - jet Initial state radiation · Σ(pT_incomingPartons)!=0 p T jet !=p T dilepton γ*/Z0 Final state radiation It will broden the jet distribution γ*/Z0 pT<100<200<300<400<500 (***) 0.002167744.23512e-052.35157e-063.25855e-075.0463e-08
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.