Download presentation
Presentation is loading. Please wait.
Published byCrystal Pierce Modified over 8 years ago
1
Squaring of a number ending in 5 An approach to determine answers Quickly! Squaring of a number ending in 5
2
85 = 80 + 5 Generalization: n is any number (e.g., 1, 2, 3, … ) Any number ending in 5 can be written in expanded form: n 10 + 5 For 85, n=8: 8 10+5
3
Graphical Approach : A square of a length ending in 5 : n 10+5 5 5 n 10
4
Graphical Approach : 55 n 10 A square of a length ending in 5 : n 10+5
5
Graphical Approach : 5 n 10 25 A square of a length ending in 5 : n 10+5
6
Graphical Approach : 5 n 10 25 A square of a length ending in 5 : n 10+5
7
Graphical Approach : A square of length ending in 5 : n 10+5 5 n 10 25 (n 10) (n 10) 5 (n 10)
8
Graphical Approach : 5 n 10 25 (n 10) (n 10) 5 (n 10) A square of length ending in 5 : n 10+5
9
Graphical Approach : 5 n 10 25 (n 10) [(n 10)+5+5] n 10 Area: (n 10) (n 10) 5 (n 10) A square of length ending in 5 : n 10+5
10
Graphical Approach : 10 n 10 25 (n 10) [(n 10)+10] = (n 10) [(n+1) 10] Area: A square of length ending in 5 : n 10+5
11
Graphical Approach : 10 n 10 (n 10) [(n 10)+10] = (n 10) [(n+1) 10] Area: + 25 A square of length ending in 5 : n 10+5
12
Graphical Approach : 10 n 10 Area: (n) (n+1) 10 10 +25 25
13
Graphical Approach : Area: (n) (n+1) 10 10 +25 10 n 10 25
14
Graphical Approach : Area: (n) (n+1) 10 10 +25 10 n 10 25 = n ( n+1 ) 25 100’s 10’s &1’s
15
Graphical Approach : 10 n 10 25 For 85, n=8 = n ( n+1 ) 25 100’s 10’s &1’s 85 85 =
16
= n ( n+1 ) 25 100’s 10’s &1’s 85 85 = Graphical Approach : 10 n 10 25 For 85, n=8 85 85 = 8 9 25 7 2 25
17
= n ( n+1 ) 25 100’s 10’s &1’s 85 85 = Graphical Approach : 10 n 10 25 For 85, n=8 85 85 = 72 25
18
Examples 25 25 = 6 25 35 35 = 12 25 55 55 = 30 25 (n 10+5 ) (n 10+5 ) = n (n+1) 25 100’s 115 115 = 495 495 = 995 995 = 132 25 2450 25 9900 25
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.