Download presentation
Presentation is loading. Please wait.
Published byDavid Neal Modified over 9 years ago
1
Differential Equation: Conservation of Momentum { } = { } + { } Sum of the External Forces Net Rate of Linear Momentum Efflux Accumulation of Linear Momentum within C.V.. (x,y,z) (x+ x, y+ y, z+ z) x y z xx zz yy F = F x i + F y j + F z k Let’s focus on the x-component of the external forces (Note that normal forces have been combined xx = -p + xx ): F x = ( xx y z) x+ x - ( xx y z) x + ( yx x z) y+ y - ( yx x z) y + ( zx x y) z+ z - ( zx x y) z + g x x y z Component of g in the x-direction Similar expressions exist for F y and F z. Now we look at the momenturm flux for the cubic element. Volumetric flow across the x-plane at x+ x: (v x y z ) x+ x The momentum flux then is: ( v v x y z ) x+ x Note:First velocity is a vector for momentum. And for the x-plane at x: ( v v x y z ) x
2
For all of the faces: [( v v x ) x+ x - ( v v x ) x ] y z + [( v v y ) y+ y - ( v v y ) y ] x z + [( v v z ) z+ z - ( v v z ) z ] x y Rate of accumulation of linear momentum The momentum of the cube is: v x y z (i.e. momentum per unit volume times the volume) and its rate of accumulation: ( v) x y z t Substituting into the word equation: { } i + { } j + { F z } k = [( v v x ) x+ x - ( v v x ) x ] y z + [( v v y ) y+ y - ( v v y ) y ] x z + [( v v z ) z+ z - ( v v z ) z ] x y + ( v) x y z t Expression for F x F y
3
lim { } = lim { ( xx ) x+ x - ( xx ) x + ( yx ) y + y - ( yx ) y + ( zx ) z + z - ( zx ) z + g x } x0x0 y0y0 z0z0 F x xyzxyz x y x0x0 y0y0 z0z0 Divide by x y z and take the limit as x, y, and z 0. Focus on RHS: lim { i + j + } = + + + x0x0 y0y0 z0z0 F x xyzxyz F y xyzxyz F z xyzxyz ( vv x ) ( vv y ) ( vv z ) ( v) x y z t Reorganize the RHS by the product rule for differentiation. = v [ + + + ] + + + + ( v x ) ( v y ) ( v z ) ( ) x y z t v v x y z t vxvx vyvy vzvz 0 (Why?) x0x0 y0y0 z0z0 F x xyzxyz F y xyzxyz F z xyzxyz Divide by x y z and take the limit as x, y, and z 0. Focus on RHS: lim { i + j + } = Our equation becomes: Dv Dt We can use our short hand notation, the substantial derivative. x-component is Dv x Dt { This is a vector equation so components must be equal. Let’s look at the x-component of the LHS: z z
4
( xx ) + ( yx ) + ( zx ) + g x x y z lim { } = xyzxyz F x x0x0 y0y0 z0z0 Combining the RHS & LHS, we obtain: Dv x = Dt Basically, this is Newton’s second law of motion If we use our viscosity relationship for the stresses, assume constant viscosity and an incompressible fluid, this becomes: ( xx ) + ( yx ) + ( zx ) + g x x y z Dv x = Dt g x - P x 2 v x 2 v x 2 v x x 2 y 2 z 2 + { + + } Laplacian or 2 Dv x = Dt g x - P + 2 v x x x-component If we multiply the x-equation by i, the y-equation by j and the z-equation by k, then add: Dv = Dt g - P + 2 v Navier-Stokes equation (vector equation) Even though derived in rectangular coordinates, it holds for cylindrical and other coordinate systems. Components are in tables.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.