Download presentation
Presentation is loading. Please wait.
Published byIris Baldwin Modified over 9 years ago
1
Identified Hadrons and Their Role at RHIC Camelia Mironov Kent State University
2
2 cmironov@bnl.gov Action: wherewhywhat.bnl.gov
3
3 cmironov@bnl.gov Relativistic Heavy Ions Collider Where? USA - Long Island – Brookhaven - RHIC
4
4 cmironov@bnl.gov System s (GeV) Au + Au20, 62, 130, 200 d + Au200 p + p200 Cu +Cu20,62, 200 different energy: vary energy density different A : vary the size of the system have the p+p baseline WHAT? COLLISIONS!
5
Au+Au collisions dense medium hadrons detector Au+Au, p+p, d+Au hadronization mechanisms Theory vs Experiment Future measurements High p T hadrons unidentified identified
6
6 cmironov@bnl.gov Geometry of the collision N part number of nucleons in the overlap region Collisions Participants Binary Collisions Participants b (fm) N part, N binary Central ----------------- peripheral N bin ( N coll ): number of inelastic nucleon - nucleon collisions (# binary collisions) b Im pa ct Pa ra m et er
7
7 cmironov@bnl.gov How A+A differs from a ‘bunch of p+p’? Initial Final p+p A+A
8
8 cmironov@bnl.gov hadrons leading particle a b c d Hard-scattering cross-sectionFragmentation Function pQCD particle production: p+p (pT>2GeV/c) InitialFinal Parton Distribution Functions p p
9
9 cmironov@bnl.gov c d hadrons a b pQCD particle production: Au+Au (pT>2GeV/c) InitialFinal Parton Distribution FunctionsIntrinsic k T PDF modification (shadowing) Hard-scattering cross-sectionFragmentation Function leading particle suppressed Partonic Energy Loss
10
10 cmironov@bnl.gov Au+Au vs. p+p Au+Au : initial +final state effects pp : ‘simple’ We NEED ALSO A collision system to disentangle the initial-final states effects p (d) + Au – ‘no final state effects’
11
11 cmironov@bnl.gov pQCD particle production: d+Au (pT>2GeV/c) InitialFinal Parton Distribution Functions Intrinsic kT PDF Modification (shadowing) Fragmentation Function c d hadrons a b
12
12 cmironov@bnl.gov Quantify deviations of A+A from p+p ? !!! Simplest: divide AA spectra to pp spectra!!!! NUCLEAR MODIFICATION FACTORS
13
13 cmironov@bnl.gov Quantify deviations of A+A from p+p NUCLEAR MODIFICATION FACTORS Need one collision system systematic errors cancel out ASSUMPTION: both ratios exhibit the same behavior because of the same underlying physics
14
14 cmironov@bnl.gov Information via R XX R ~1 -- no nuclear effects: A+B = C * (p+p) deviation from 1 indicate presence of nuclear effects: R>1 enhancement (usual explanation: soft scatters before hard collision) R<1 suppression (energy loss in dense medium)
15
15 cmironov@bnl.gov Nuclear modification factors for h+-
16
16 cmironov@bnl.gov R AA /R CP : h ± Charged Hadrons: Au + Au : R CP and R AA ~ suppression d + Au : R CP and R dA ~ enhancement (Cronin effect – experimental observation and not the explanation) R AA & R dA R CP dAu AuAu
17
17 cmironov@bnl.gov STAR, nucl-ex/0305015 pQCD + Shadowing + Cronin pQCD + Shadowing + Cronin + Energy Loss factor ~5 suppression pQCD + initial state effects pQCD + initial+final state effects Theory: R AA for h+- pQCD+final (energy loss) + initial (intrinsic kT+shadowing) describes data dense medium created in central AuAu !!!!! pQCD+Shadowing+Intrinsic kT+ Energy Loss pQCD+Shadowing+ Intrinsic kT
18
18 cmironov@bnl.gov Conclusions from h+- R AA, R dA and R CP give same information pp and peripheral dAu/ AuAu are “the same” !! h+- dominated by mesons (pions) 0 1 2 3 4 5 6 7 8 9 10 11 12 GeV/c pQCD (string fragmentation) soft Phenomenological (Hadronization) scale
19
19 cmironov@bnl.gov Identified hadrons … (dss) 1321 (MeV/c 2 ) Λ(uds) 1116 (MeV/c 2 ) (sss) 1673(MeV/c 2 ) K(us) 494(MeV/c 2 ) K 0 s (ds) 498(MeV/c 2 ) (ss) 1020(MeV/c 2 ) p + p d + Au Au + Au Do all these particles have anything extra to add to what unidentified charged hadrons revealed already?
20
20 cmironov@bnl.gov Have I wasted my time doing charged kaons identification analysis? Kaons: p T ~700 MeV Traditional: K μν (63%) K ππ0 (21%) Charged charged + neutral K charged daughter K parent KINK Topological reconstruction
21
21 cmironov@bnl.gov Nuclear Modification Factors for K, Φ, π, Λ,Ξ… Au+Au d+Au
22
22 cmironov@bnl.gov Au+Au R CP Experiment Baryons suppressed ~ 2.5GeV/c Mesons suppressed ~ 1.5GeV/c
23
23 cmironov@bnl.gov Au+Au R AuAu Experiment Mesons suppressed Baryons enhanced AND maxR AA p(uud) <maxR AA Λ(uds) <maxR AA Ξ(dss)
24
24 cmironov@bnl.gov Au+Au R CP Theory Topor-Pop et al ( nucl-th/0407095 ) HIJING/BBbar v2 describe data too!! Hijing/BBbar v2 0-10% / 60-90% For K - + K + and Λ+Λbar additional production mechanism for baryons (junctions) Reco for K0s and Λ+Λbar Central(b=3fm) / Peripheral (b=12fm) ReCombination - assumes the recombination of two and three low pT partons to form hadrons from an exponential parton pT spectrum. Recombination describes the baryon – mesons differences Fries et al nucl-th/0306027
25
25 cmironov@bnl.gov Au+Au R AuAu Theory … Topor-Pop (private comunication and nucl-th/0407095 ) Experimental pattern reproduced
26
26 cmironov@bnl.gov My educated guess on this … R CP is the SAME for all baryons ! ? same effect is present in both central and peripheral Au+Au ? it’s not Au+Au it’s p+p It’s more a p+p effect rather than some fancy stuff going on in Au+Au! [Tounsi & Redlich: hep-ph/0111159] Canonical suppression of yield in pp compared to AA!!
27
27 cmironov@bnl.gov d+Au R CP and R dAu both ratio present enhancement compared to binary scaling similar to AA, there seem to be a difference between mesons and baryons also R dA (baryons) > R CP (baryons) (error bars) R CP R dA
28
28 cmironov@bnl.gov d+Au Theory 1. Kopeliovich, Nemchik, Schafer, Tarasov – Phys. Rev. Lett. 88(2002) 232303 2. Vitev, Gyulassy – Phys. Rev. Lett. 89 (2002) 252301 3. X.N. Wang – Phys. Rev. C 61(2000) 064910 4. Accardi, Trelani –Phys. Rev. D 64(2001) 116004 5. Zhang, Fai, Papp, Bernafoldi, Levai – Phys. Rev. C 65(2002) 034903 Rescatterings (projectile hadron or its partons) PRIOR to the hard collision cause a broadening of the p T spectrum pTpT R AB 1 ~2-4 GeV/c 1.1-1.5 A p 1.Hwa, Yang nucl-th/0404066 Recombination model (Oregon) FINAL STATE recombination of partons determine the enhancement of the nuclear modification factor
29
29 cmironov@bnl.gov d+Au Theory 1.Hwa, Yang nucl-th/0404066 Recombination (Oregon) Final state effect Initial state elastic scatterings reproduce the general trend of the R dA but NOT the particle species dependence Kopeliovich, Nemchik, Schafer, Tarasov – Phys. Rev. Lett. 88(2002) 232303
30
30 cmironov@bnl.gov MHO on this final vs initial issue … Fermilab 772 experiment p+Fe/H2 Drell-Yan production – no final partons to recombine! DIS experiments at DESY e+ + N/Kr/Cu Hadron production in eA compared to eD no initial rescatteings If call ‘Cronin’ an experimental observation then easier to accept that the enhancement observed in different collision systems and energies, can have different (and not unique) explanations !
31
31 cmironov@bnl.gov Conclusions from identified hadrons R AB /R CP HAS TO BE TREATED SEPARATELLY (at least until an explanation/scaling for the R AB strangeness ordering is found) Au+Au, d+Au: difference between mesons and baryons in the intermediate pT region same hadronization mechanism ?! models assuming different hadronization scenarios, qualitatively describe data need other probes 0 1 2 3 4 5 6 7 8 9 10 11 12 GeV/c Hard Intermediate soft New phenomenological scale
32
32 cmironov@bnl.gov Other probes to answer the questions DO JET ANALYSIS with identified particles in p+p, d+A and A+A trigger on mesons and baryons trigger on strange and non-strange baryons and meson Back side Same side Trigger Particle Associated Particles
33
33 cmironov@bnl.gov Other probes to answer the questions DO JET ANALYSIS with identified particles in p+p, d+A and A+A trigger on mesons and baryons trigger on strange and non-strange baryons and meson Back side Same side Trigger Particle Associated Particles Present results in heavy ions for h-h, baryon-h, meson-h correlations
34
34 cmironov@bnl.gov Two particle correlations: Hwa, Yang nucl-th/0407081 Trigger Particle AssociatedParticles Jet structure by two-particle correlation within the jet: must consider 4/5 partons to recombine Trigger on pions and calculate the distribution of the associated particles (AuAu collisions)
35
35 cmironov@bnl.gov Strange-Strange correlations … Hadron production at SLD short-range, local correlations short- range compensation of quantum numbers long-range correlations between opposite charge leading particle production: ssbar events different from uubar or ddbar events Rapidity difference between identified hadron pairs
36
36 cmironov@bnl.gov “Braveheart”: Strange-Strange correlations K + (us) K - (su) Λ(uds) K + (su) Λ(uds) K - (su)
37
37 cmironov@bnl.gov Not much… Λ trigger: 2<p T <6 (GeV/c) K assoc: 1.5< pT < p T trigger (GeV/c) Not much, but an interesting analysis to continue with
38
38 cmironov@bnl.gov Final conclusion … Much to learn, you still have!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.