Presentation is loading. Please wait.

Presentation is loading. Please wait.

ISOLDE Nuclear Reaction and Nuclear Structure Course 22-25 April 2014 Nuclear Reaction at Intermediate to Relativistic Energies: what data tell us (I)

Similar presentations


Presentation on theme: "ISOLDE Nuclear Reaction and Nuclear Structure Course 22-25 April 2014 Nuclear Reaction at Intermediate to Relativistic Energies: what data tell us (I)"— Presentation transcript:

1 ISOLDE Nuclear Reaction and Nuclear Structure Course 22-25 April 2014 Nuclear Reaction at Intermediate to Relativistic Energies: what data tell us (I)

2 Jeg kender ikke meget til meget; det jeg kender til er i forvejen meget udbredt. Tœnk at vide bare een bestemt ting, for eksempel forholdet mellem mariehønens pletter. Benny Andersen, Viden1965 I do not know much about anything; what I know is already commonplace. Wouldn’t it be nice to know just one fact, for example the proportions of the spots of the ladybird.

3 Nobel Symposium NS 152 Phys. Scr. T 152(2013)

4 GSI ISOLDE GANIL GANIL/SPIRAL THEORY

5 2H2H 1H1H 5 H unbound 7H7H 7 H unbound 3 He 4 He 5 He unbound 6 He 808 ms 7 He unbound 8 He 119 ms 9 He unbound 10 He unbound 6 Li 7 Li 8 Li 840 ms 9 Li 179 ms 10 Li unbound 11 Li 8.5 ms 7 Be 8 Be unbound 9 Be 10 Be 1.6 10 6 y 11 Be 13.8 s 12 Be 23.6 ms 13 Be unbound 14 Be 4.35 ms 9 B unbound 10 B 11 B 12 B 20.20 ms 13 B 17.33 ms 14 B 13.8 ms 15 B 10.4 ms 8 B 770 ms 16 B unbound 17 B 5.1 ms n 10.25 m 3 H 12.323 y 12 Li unbound 13 Li unbound 9 C 125 ms 10 C 19.3 s 11 C 20.4 m 12 C 13 C 14 C 5730 y 15 C 2.45 s 16 C 0.747 s 17 C 193 ms 18 C 92 ms 12 N 20.4 m 13 N 20.4 m 14 N 15 N 16 O 17 O 18 O 19 F 11 N unbound 13 O 8.58 ms 14 O 70.6 s 15 O 2.03 m 17 F 64.8 s 18 F 109.7 m 16 N 7.13 s 17 N 4.17 s 18 N 0.63 s 19 N 329 ms 19 O 27.1 s 20 F 11 s 20 O 13.5 s 21 F 4.16 s 12 O unbound 15 F unbound 16 F unbound Light Nuclei in Nature Proton Rich Neutron Rich Resonances N Z 16 Be unbound 15 Be unbound

6 Spins Moments Spins Moments Momentum Distributions Momentum Distributions Reaction Cross Sections Reaction Cross Sections Beta Decay Beta Decay Unbound Nuclei Unbound Nuclei Experimental Studies of Dripline Nuclei Masses Matter Radii Correlations Momentum Profile Function Correlations Momentum Profile Function Charge Radii Charge Radii Elastic Scattering Elastic Scattering

7 2H2H 1H1H 5 H unbound 7H7H 7 H unbound 3 He 4 He 5 He unbound 7 He unbound 8 He 119 ms 9 He unbound 10 He unbound 6 Li 7 Li 8 Li 840 ms 9 Li 179 ms 10 Li unbound 11 Li 8.5 ms 7 Be 8 Be unbound 9 Be 10 Be 1.6 10 6 y 11 Be 13.8 s 12 Be 23.6 ms 13 Be unbound 14 Be 4.35 ms 9 B unbound 10 B 11 B 12 B 20.20 ms 13 B 17.33 ms 14 B 13.8 ms 15 B 10.4 ms 8 B 770 ms 16 B unbound 17 B 5.1 ms n 10.25 m 3 H 12.323 y 12 Li unbound 13 Li unbound 9 C 125 ms 10 C 19.3 s 11 C 20.4 m 12 C 13 C 14 C 5730 y 15 C 2.45 s 16 C 0.747 s 17 C 193 ms 18 C 92 ms 12 N 20.4 m 13 N 20.4 m 14 N 15 N 16 O 17 O 18 O 19 F 11 N unbound 13 O 8.58 ms 14 O 70.6 s 15 O 2.03 m 17 F 64.8 s 18 F 109.7 m 16 N 7.13 s 17 N 4.17 s 18 N 0.63 s 19 N 329 ms 19 O 27.1 s 20 F 11 s 20 O 13.5 s 21 F 4.16 s 12 O unbound 15 F unbound 16 F unbound N Z 16 Be unbound 15 Be unbound 6 He 808 ms

8 6 He

9 3 He 4 He 5 He unbound 6 He 808 ms 7 He unbound 8 He 119 ms 9 He unbound 10 He unbound

10 W(   n ) = 1 + 1.5(3)cos 2 (   n ) L.V. Chulkov et al., PRL 79 (1997) 201 W(   n ) = 1 + 3cos 2 (   n )

11 L.V. Chulkov, G. Schrieder, Z. Phys A359 (97) 231 (p 1/2 ) 2 ~ 7 % W(   n ) = 1 + 1.5(3)cos 2 (   n )

12

13 Yu. Aksyutina et al., PLB 679 (2009) 191 s-wave: Effective-range approximation Bertch et al., PRC 57 (1998) 1366 ~ 9 % B.V. Danilin et al., NPA 632 (98) 383 (p 3/2 ) 2 ~ 86 % (p 1/2 ) 2 ~ 5 % (s 1/2 ) 2 ~ 7 %  ≈ S 2n

14 Yu. Aksyutina et al., PLB 679 (2009) 191 K. Markenroth et al., NP A679 (2001) 462 440 keV

15 Yu. Aksyutina et al., PLB 679 (2009) 191 :

16 Momentum Profile Function

17 Transverse Momentum Distribution P.G. Hansen, PRL 77 (1996) 1016 D. Basin et al., Phys. Rev. C 57 (1998) 2156

18 Yu. Aksyutina et al., PLB 718 (2013) 1309

19

20 6 He 806 ms 8 He 119 ms 7 He 806 ms 9 He 806 ms 9 Li 179 ms 10 Li 806 ms 11 Li 8.5 ms 11 Be 13.8 s 12 Be 23.6 ms 14 Be 4.35 ms 13 Be 806 ms V nn V Cn Unbound Bound N=8 11 Li S n =369 keV

21 M.V. Zhukov et al. Phys. Rep. 231 (1993) 151 BORROMEAN Isola Bella, Lago Maggiore P.G. Hansen et al. Ann.Rev.Nucl.Part. Sci. 45 (1995) 591 S.E. Pollack et al. Science 326 (2009) 1683

22 W(  nf ) = 1-1.03cos (  nf ) + 1.41cos 2 (  nf ) GSI, 287 MeV/u 11 Li p n1 =-( p n2 + p 9Li ) s p d Simon, et al., Nucl. Phys. A791 (2007) 267.

23 Momentum Profile Function

24 (0d 5/2 ) 2 11(2) % (0d 5/2 ) 2 11(2) % Aksyutina et al. PLB 718 (2013) 1309

25  ( 11 Li) = 3.6712(3)  N Si [LiF] 6 Li 7 Li 8 Li 840 ms 9 Li 179 ms 10 Li unbound 11 Li 8.5 ms 12 Li unbound 13 Li unbound |Q ( 11 Li)| = 33.3(5) mb Zn [LiNbO 3 ] |Q ( 11 Li)/ Q ( 9 Li)| = 1.088(15) R. Neugart et al., PRL 101(2008) 132502 D. Borremans et al., PRC 72 (2005) 044309 I  =3/2 -

26 GANIL 41 MeV/u 14 B, C target 7 Be 8 Be unbound 9 Be 10 Be 1.6 10 6 y 11 Be 13.8 s 12 Be 23.6 ms 13 Be unbound 14 Be 4.35 ms 16 Be unbound J.L. Lecouey, Few Body Systems 34 (2004)21 G. Randisi, Thesis Uni. Caen (2011) 15 Be unbound Spyrou et al.,, PRL 108(2012) 102501 Snyder et al.,, PRC 88(2013) 031303 15 Be 16 Be 14 Be 4.35 ms 16 Be unbound 15 Be unbound 17 B 5.1 ms

27 Y. Kondo et al., PLB 690 (2010) 245 RIKEN 69 MeV/u 14 Be, Lq H target

28 GSI 304 MeV/u 14 Be, Lq H target Yu. Aksyutina et al., Phys. Rev. C 87 (2013) 064316

29 RIKEN 69 MeV/u GSI 304 MeV/u

30 INTERFERENCE ?

31 Yu. Aksyutina et al., Phys. Rev. C 87 (2013) 064316

32 2H2H 1H1H 5 H unbound 7H7H 7 H unbound 3 He 4 He 5 He unbound 6 He 808 ms 7 He unbound 8 He 119 ms 9 He unbound 10 He unbound 6 Li 7 Li 8 Li 840 ms 9 Li 179 ms 10 Li unbound 11 Li 8.5 ms 7 Be 8 Be unbound 9 Be 10 Be 1.6 10 6 y 11 Be 13.8 s 12 Be 23.6 ms 13 Be unbound 14 Be 4.35 ms 9 B unbound 10 B 11 B 12 B 20.20 ms 13 B 17.33 ms 14 B 13.8 ms 15 B 10.4 ms 8 B 770 ms 16 B unbound 17 B 5.1 ms n 10.25 m 3 H 12.323 y 12 Li unbound 13 Li unbound 9 C 125 ms 10 C 19.3 s 11 C 20.4 m 12 C 13 C 14 C 5730 y 15 C 2.45 s 16 C 0.747 s 17 C 193 ms 18 C 92 ms 12 N 20.4 m 13 N 20.4 m 14 N 15 N 16 O 17 O 18 O 19 F 11 N unbound 13 O 8.58 ms 14 O 70.6 s 15 O 2.03 m 17 F 64.8 s 18 F 109.7 m 16 N 7.13 s 17 N 4.17 s 18 N 0.63 s 19 N 329 ms 19 O 27.1 s 20 F 11 s 20 O 13.5 s 21 F 4.16 s 12 O unbound 15 F unbound 16 F unbound N Z 16 Be unbound 15 Be unbound

33 5 He unbound 10 Li unbound 7 H unbound 4 He 6 He 808 ms 7 He unbound 8 He 119 ms 9 He unbound 10 He unbound 6 Li 7 Li 8 Li 840 ms 9 Li 179 ms 11 Li 8.5 ms 7 Be 8 Be unbound 9 Be 10 Be 1.6 10 6 y 11 Be 13.8 s 12 Be 23.6 ms 13 Be unbound 14 Be 4.35 ms 12 Li unbound 13 Li unbound 11 Li:Neutron knock-out reaction -> 10 Li Proton knock-out reactions -> 9,10 He 14 Be:Neutron knock-out reaction -> 13 Be Proton knock-out reactions -> 12,13 Li 8 He: Neutron knock-out reaction -> 7 He Proton knock-out reaction -> ( 7 H) Dripline nuclei as stepping stones towards the unbound

34

35 10 Li unbound 6 Li 7 Li 8 Li 840 ms 9 Li 179 ms 11 Li 8.5 ms 12 Li unbound 13 Li unbound Forssén et al. Nucl. Phys. A 673(2000) 143 Yu. Aksyutina et al., Phys. Lett. B 666 (2008) 430

36 Al Kalanee et al., PRC 88 (2013) 034301 3 He 4 He 5 He unbound 6 He 808 ms 7 He unbound 8 He 119 ms 9 He unbound 10 He unbound Johansson et al., Nucl. Phys. A842 (2010) 15 8 He+n

37 Neyman-Pearson test 3 He 4 He 5 He unbound 6 He 808 ms 7 He unbound 8 He 119 ms 10 He unbound 9 He unbound 8 He+n+n Johansson et al., Nucl. Phys. A842 (2010) 15

38 8 He+n+n  fn = E fn /E  nn = E nn /E (s 1/2 ) 2 ~ 37 % (p 1/2 ) 2 ~ 47 % (p 3/2 ) 2 ~ 9 % N.B. Shulgina et al., Nucl. Phys. A825 (2009) 175 9 He unbound 10 He unbound 11 Li 8.5 ms

39 T Y 0 – 3 MeV Restricted series of hyperspherical harmonics assuming I  = 0 + and K ≤ 2 Restricted series of hyperspherical harmonics assuming I  = 0 + and K ≤ 2 Energy and angular correlations

40 3 – 7 MeV T Y Restricted series of hyperspherical harmonics assuming I  = 2 + and K ≤ 4 Restricted series of hyperspherical harmonics assuming I  = 2 + and K ≤ 4 Energy and angular correlations

41 Johansson et al., Nucl. Phys. A847 (2010) 66

42 7 Be 8 Be unbound 9 Be 10 Be 1.6 10 6 y 11 Be 13.8 s 12 Be 23.6 ms 13 Be unbound 14 Be 4.35 ms 16 Be unbound I  =2 + 15 Be unbound RIKEN 68 MeV/u 14 Be, 12 C target Sugimoto et al., Phys. Lett. B654 (2007) 160

43 Yu. Aksyutina et al., PRL 111, 242501 (2013)

44  fn = E fn /E

45 [2,0] [0,2] [2,2] 2 MeV < E fnn < 3 MeV E* = 3.54(16) MeV,  = 1.5 MeV I  = 2 + (1s 1/2, 0d 5/2 ) ≈ 90 % L.M. Delves, Nucl. Phys. 20 (1960) 275

46 0.5 MeV < E fnn < 1.0 MeV

47

48 Sequential Decay

49 C.R. Hoffman et al., PLB 672 (2009) 17 R. Kanungo et al., PRL 102 (2009) 152501 GSI MSU S =1.74(19) 2 + : 4.7 MeV

50 T. Otsuka et al., PRL 105 (2010) 032501 N.A. Smirnova et al., PLB 686 (2010) 109 T. Otsuka et al., PRL 104 (2010) 032501

51 23 O 82 ms 24 O 61 ms 25 O unbound 24 F 0.34 s 25 F 50 ms 26 F 10.2 ms 27 F 4.9 ms 28 F unbound 29 F 2.6 ms C.R. Hoffman et al. PRL 100 (2008) 152502 26 O unbound 30 F unbound 31 F >260 ns 28 O unbound GSI : Data September 2010 Shell gap 1s 1/2 – 0d 3/2 4.86(13) MeV E decay =770 keV,  = 172 keV, l=2 MoNA B. Juradoet al. PLB 649 (2007) 43

52 23 O 82 ms 24 O 61 ms 25 O unbound 24 F 0.34 s 25 F 50 ms 26 F 10.2 ms 27 F 4.9 ms 28 F unbound 29 F 2.6 ms 26 O unbound 30 F unbound 31 F >260 ns 28 O unbound GSI : Data September 2010 C. Caesar et al. PRC 88 (2013) 034313 E. Lunderberg et al. PRL 108 (2012) 142503 Two-neutron radioactivity ? L.V. Grigorenko et al. PRL 111 (2013) 042501 Z. Kohley et al. PRL 110 (2013) 152501

53 Negative log-likelihood (-ln[L])

54 To view the world in this way Is to see it with the eyes of a gambler. Our best choice is to cast the die again and again. To let it keep rolling in the hope That it will give returns high enough to inspire new expectations. Att betrakta världen så är att se på den med tärningsögon. Vårt bästa val är att kasta tärningen ofta, ofta. Att ständigt låta den rulla, att den må falla ut med en kvot stor nog för en ny förväntan att andas. Harry Martinson Tärningspelet, 1971


Download ppt "ISOLDE Nuclear Reaction and Nuclear Structure Course 22-25 April 2014 Nuclear Reaction at Intermediate to Relativistic Energies: what data tell us (I)"

Similar presentations


Ads by Google