Download presentation
Presentation is loading. Please wait.
Published byTheresa Caldwell Modified over 8 years ago
1
The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)
2
Summary Motivation Model used at EBAC@JLAB , , , production: Hadronic production Photoproduction Electroproduction * Expected during 2010
3
Baryon Resonances Exciting the substructure we can learn about the forces which keep the quarks together, e.g. using the quark model picture some of the predicted states are: P11 (939) 0s 0p L=0, S=1/2, J =1/2 + P33 Δ(1232) L=0, S=3/2, J =3/2 + S11 (1535) L=1, S=1/2, J =1/2 - D13 (1520) L=1, S=1/2, J =3/2 - S31 (1620) L=1, S=1/2, J =1/2 - D33 (1700) L=1, S=1/2, J =3/2 - J=1/2 J=3/2 J=1/2 qqq
4
The Δ (1232) and others The Delta (1232) resonance stands as a clear peak The region 1.4 GeV – 2 GeV hosts ~ 20 resonances πN X, πN N*: 1440, 1520, 1535, 1650, 1675, 1680,... Δ : 1600, 1620, 1700, 1750, 1900, … Δ (1232) 100
5
E.m. probes Jefferson LAB (USA) GRAAL (Grenoble) MAMI (Mainz) BATES (MIT) ELSA (Bonn) SPring 8 (Japan) (Courtesy of D. Leinweber) Originaly, the hope was that probing the structure with electrons would minimize the “hadronic” debris and would give a cleaner access to the properties of nucleons and resonances
6
Electroproduction of mesons ** N N* N N M Main elements: 1. Strong-strong interactions 2. Hadronic structure of Resonances 3. Electromagnetic structure of Resonances Coupled-channels
7
EBAC plan and method
8
EBAC@JLAB N* properties N-N* form factors QCDQCDQCDQCD Lattice QCD Hadron Models Dynamical Coupled-Channels Analysis @ EBAC Reaction Data
9
Formalism (DCC) Non-resonant + resonant Dressed resonant vertex Resonance self energies Non-resonant amplitude (resummation)
10
Partial wave amplitude of a b reaction: Reaction channels: Potential: 2-body v potential (no N cut) 2-body v potential (no N cut) bare N* state 2-body Z potential (with N cut) 2-body Z potential (with N cut) EBAC-DCC A. Matsuyama, T. Sato, T.-S.H. Lee, Phys. Rep. 2007
11
5 diagrams s-ch N u-ch N u-ch t-ch t-ch 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 3 diagrams s-ch N u-ch N t-ch 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N t-ch t-ch 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N u-ch t-ch 1 diagram s-ch N 1 diagram s-ch N 2 diagrams s-ch N u-ch N 2 diagrams s-ch N t-ch Total 36 diagrams Two body v’s (strong)
12
7 diagrams s-ch N u-ch N u-ch t-ch t-ch t-ch contact 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N t-ch contact Total 20 diagrams 5 diagrams s-ch N u-ch N u-ch t-ch contact Two body v’s (e.m.)
13
EBAC framework overview Physics: Non-resonant obtained from phenomenological Lagrangians Unitarity fulfilled within the model Most relevant channels included Up to now , , ( , , ), near future Consistent study of all production reactions Correct treatment of 3 body cut Technical Parallel computing version of the codes needed
14
Hadronic part (essential starting point)
15
MB MB (up to 2 GeV) We introduce explicitly (impose) a minimal number of bare poles, 16 of 23 (4* and 3* from PDG): N: S11(2), P11(2), P13(1), D13(2), D15(1), F15(1) Δ: S31(1), P31(1), P33(2), D33(1), F35(1), F37(1)
16
Technical aspects Need for extensive parameter search. Several unknowns : e.g. couplings of resonances to MB states Supercomputing Resources NERSC LBNL (>500 kh, 07/10) PI: TSH Lee BSC, Spain (340 kh, 07/08), PI: B. Julia-Diaz Involved system of coupled integral equations with singularities.
17
: comparisons to data EBAC SAID06
18
Data obtained through R. Arndt et al, SAID, gwdac.phys.gwu.edu B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007) d /d Polarization : comparisons to data (ii)
19
: comparing amplitudes Amplitudes compared to GWU/SAID amplitudes for the I=1/2 sector B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007 ) Real part of the AmplitudesImaginary part of the Amplitudes
20
: comparing TCS Total Cross sections compared to experimental data B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007) Prediction for the total cross sections for each individual channel
21
: vs other approaches From M. Paris talk at INT 2009 and R. Arndt talk at Badhonnef 2009
22
TCS s H. Kamano, B. Julia-Diaz, TSH Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79 (2009) 025206 Not used to constrain the model. Previous works, mostly tree level: Meissner et al (1995 ) Oset et al (1985 )
23
, distributions Data handled with the help of R. Arndt Invariant mass distributions Phase space Full model H. Kamano, B. Julia-Diaz, TSH Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79 (2009) 025206
24
Properties of N* (strong)
25
I. Analytic continuation of T(W) to the unphysical sheet by using contour deformation II. Poles can be both in the non-resonant and resonant amplitudes III. One can search for poles of T as a function of W (p’s are arbitrary) Resonance states Extraction of Resonances from Meson-Nucleon Reactions. N. Suzuki, T. Sato, T.-S.H. Lee, Phys. Rev. C 79 (2009) 025205; arXiv:0910.1742, part of Suzuki’s PhD Thesis Resonance Mass
26
N. Suzuki, B. Julia-Diaz, H. Kamano, A. Matsuyama, TSH Lee, T Sato, arXiv: 0909.1356 Dynamical origin of N(1440) poles EBAC1357 - i 761364 - i 105 R. A. Arndt et al.(SAID)1359 - i 821388 - i 83 M. Doring et al.(JUELICH)1387 - i 147/21387 - i 71 1. Within our framework the three P11 states evolve from the same bare state. 2. In the fig: evolution of the pole position as we increase the self energy
27
EBAC current N*
28
Electromagnetic part
29
Goal : E.m. meson production Make use of the vast database for single and double pion photo and electroproduction reactions (JLAB, ELSA, MAMI, …) to: 1)Look for yet unseen resonances 2)Confirm the existence of the N*s seen in the hadronic reactions 3)Extract resonance properties: a)Couplings to meson-baryon b)Electromagnetic structure
30
Schematic view ** N N* N Consequence of Unitarity
31
Data considered: – Differential cross sections – p 0 p (8793) – p + n (5063) – Photon asymmetry (Sigma) – p 0 p(1204) – p + n (881) Consider up to W = 1.6 GeV. Single pion photoproduction Analysis performed at specific energies. B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, L.C. Smith, Phys. Rev. C77, 045205 (2008)
32
σ TOT ( b) p0pp0p Comparison to data Total cross section Differential cross sections Target polarization p+np+n Single pion photoproduction
33
Electroproduction Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C 80, 025207 (2009). 1. Fit1: T + L, LT, TT, p(e,e’ 0 )p [Joo et al. PRL02] 2. Fit2 all p(e,e’ + )n, p(e,e’ 0 )p 3. Fit3 p(e,e’ 0 )p [Joo et al. PRL (2002 & 2003)] Consider W<1.65 MeV and Q 2 <1.45 GeV 2 No assumption on the Q 2 dependence of the helicity amplitudes Resonances which play a role: S 11, P 11, P 33, D 13 Could not fit all the structure functions simultaneously Performed several fits to clarify the situation
34
Data at Q 2 <1.45 GeV 2 Fit1 Fit3 Fit2
35
Structure functions (ii) Q 2 = 0.4 GeV 2 Solid: Fit1 Dashed:Fit2 Dotted: Fit3 p+np+n Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C 80, 025207 (2009).
36
Coupled channels effects 1. Solid Full Fit1 2. Dashed only N intermediate (in e.m. piece) 3. Data from http://clasweb.jlab.org/physicsdb/ Q 2 = 0.4 GeV 2
37
H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, arXiv:0909.1129 (2009) (Phys. Rev. C in press) Study of two pion photoproduction: Good description near threshold Reasonable shape of angular distributions Not good description of the total cross sections of p 0 0 and p + - above 1440 MeV - Previous (tree level) works include Meissner (1994 ) Gomez Tejedor, Roca,(1993 ) Fix et al (2005)
38
In progress (~ 2010) EBAC second generation model: Full Combined (global fit) analysis of: N N, N (W<2 GeV) N N (W<2 GeV) N N (W<2 GeV) N N (W<2 GeV) N N (W<2 GeV) N* structure extraction *N N (W<2 GeV, Q 2 <4 GeV 2 ) *N N (W<2 GeV) *N N (W<2 GeV) WEBPAGE: http://ebac-theory.jlab.org
39
BACKUP
40
EBAC@JLAB WEBPAGE: http://ebac-theory.jlab.org MANPOWER: Leader (ANL/JLAB): T.-S.H.Lee Postdocts (JLAB): H. Kamano S. Nakamura K. Tsushima A. Sibirtsev Starting date: 2006 EXTERNAL COLLABORATORS: T. Sato, N. Suzuki (Osaka) A. Matsuyama (Shizuoka) B. Julia-Diaz (Barcelona) B. Saghai, J. Durand (Saclay)
41
Timeline of EBAC results Full DCC Formalism A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rep. (2007) Hadronic piece fixed ( N N, N)(W<2 GeV) B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, PRC (2007) J. Durand, B. Julia-Diaz, T.-S.H. Lee, T. Sato, B. Saghai, PRC (2008) N N (W<1.6 GeV) B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, LC Smith, PRC (2008) N N H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, PRC (2008) Analytic continuation N. Suzuki, T. Sato, T.-S.H. Lee, PRC (2008) * N (W<1.6 GeV, Q 2 <1.5 GeV 2 ) B. Julia-Diaz, H. Kamano, T.-S.H. Lee, A. Matsuyama, T.Sato,, PRC (2009) N (W<1.8 GeV) H. Kamano, B. Julia-Diaz, T.-S.H. Lee, A. Matsuyama, T. Sato, PRC (2010)
42
Multi step (unitarity) How do we produce meson-baryon states? Directly Through MB states Through MMB states We need to incorporate all the possibilities Unitarity Coupled-channels σ TOT ( b) pp
43
Structure functions Q 2 = 1.45 GeV 2 p0pp0p Solid: Fit1
44
H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, arXiv:0909.1129 (2009), Phys. Rev. C in press , N* effects
45
PDG *s and N*’s origin Are they all genuine quark/gluon excitations? |N*> =| qqq > Is their origin dynamical? E.g. some could be understood as arising from meson-baryon dynamics |N*>= | MB > Most of their properties are extracted from N N N N
46
Z terms Z
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.