Presentation is loading. Please wait.

Presentation is loading. Please wait.

The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)

Similar presentations


Presentation on theme: "The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)"— Presentation transcript:

1 The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)

2 Summary Motivation Model used at EBAC@JLAB , , , production: Hadronic production   Photoproduction   Electroproduction  *   Expected during 2010

3 Baryon Resonances Exciting the substructure we can learn about the forces which keep the quarks together, e.g. using the quark model picture some of the predicted states are: P11 (939) 0s 0p L=0, S=1/2, J  =1/2 + P33 Δ(1232) L=0, S=3/2, J  =3/2 + S11 (1535) L=1, S=1/2, J  =1/2 - D13 (1520) L=1, S=1/2, J  =3/2 - S31 (1620) L=1, S=1/2, J  =1/2 - D33 (1700) L=1, S=1/2, J  =3/2 - J=1/2 J=3/2 J=1/2 qqq

4 The Δ (1232) and others The Delta (1232) resonance stands as a clear peak The region 1.4 GeV – 2 GeV hosts ~ 20 resonances πN  X, πN N*: 1440, 1520, 1535, 1650, 1675, 1680,... Δ : 1600, 1620, 1700, 1750, 1900, … Δ (1232) 100

5 E.m. probes Jefferson LAB (USA) GRAAL (Grenoble) MAMI (Mainz) BATES (MIT) ELSA (Bonn) SPring 8 (Japan) (Courtesy of D. Leinweber) Originaly, the hope was that probing the structure with electrons would minimize the “hadronic” debris and would give a cleaner access to the properties of nucleons and resonances

6 Electroproduction of mesons ** N N* N N M Main elements: 1. Strong-strong interactions 2. Hadronic structure of Resonances 3. Electromagnetic structure of Resonances Coupled-channels

7 EBAC plan and method

8 EBAC@JLAB N* properties N-N* form factors QCDQCDQCDQCD Lattice QCD Hadron Models Dynamical Coupled-Channels Analysis @ EBAC Reaction Data

9 Formalism (DCC) Non-resonant + resonant Dressed resonant vertex Resonance self energies Non-resonant amplitude (resummation)

10 Partial wave amplitude of a  b reaction: Reaction channels: Potential: 2-body v potential (no  N cut) 2-body v potential (no  N cut) bare N* state 2-body Z potential (with  N cut) 2-body Z potential (with  N cut) EBAC-DCC A. Matsuyama, T. Sato, T.-S.H. Lee, Phys. Rep. 2007

11 5 diagrams s-ch N u-ch N u-ch  t-ch  t-ch  2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 3 diagrams s-ch N u-ch N t-ch  2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N t-ch  t-ch  2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N u-ch  t-ch  1 diagram s-ch N 1 diagram s-ch N 2 diagrams s-ch N u-ch N 2 diagrams s-ch N t-ch  Total 36 diagrams Two body v’s (strong)

12 7 diagrams s-ch N u-ch N u-ch  t-ch  t-ch  t-ch  contact 2 diagrams s-ch N u-ch N 2 diagrams s-ch N u-ch N 4 diagrams s-ch N u-ch N t-ch  contact Total 20 diagrams 5 diagrams s-ch N u-ch N u-ch  t-ch  contact Two body v’s (e.m.)

13 EBAC framework overview Physics: Non-resonant obtained from phenomenological Lagrangians Unitarity fulfilled within the model Most relevant channels included Up to now , ,  ( , ,  ), near future  Consistent study of all production reactions Correct treatment of 3 body cut Technical Parallel computing version of the codes needed

14 Hadronic part (essential starting point)

15 MB  MB (up to 2 GeV) We introduce explicitly (impose) a minimal number of bare poles, 16 of 23 (4* and 3* from PDG): N: S11(2), P11(2), P13(1), D13(2), D15(1), F15(1) Δ: S31(1), P31(1), P33(2), D33(1), F35(1), F37(1)

16 Technical aspects Need for extensive parameter search. Several unknowns : e.g. couplings of resonances to MB states Supercomputing Resources NERSC LBNL (>500 kh, 07/10) PI: TSH Lee BSC, Spain (340 kh, 07/08), PI: B. Julia-Diaz Involved system of coupled integral equations with singularities.

17  : comparisons to data EBAC SAID06

18 Data obtained through R. Arndt et al, SAID, gwdac.phys.gwu.edu B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007) d  /d  Polarization  : comparisons to data (ii)

19  : comparing amplitudes Amplitudes compared to GWU/SAID amplitudes for the I=1/2 sector B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007 ) Real part of the AmplitudesImaginary part of the Amplitudes

20  : comparing TCS Total Cross sections compared to experimental data B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rev. C 76, 065201 (2007) Prediction for the total cross sections for each individual channel

21  : vs other approaches From M. Paris talk at INT 2009 and R. Arndt talk at Badhonnef 2009

22    TCS s H. Kamano, B. Julia-Diaz, TSH Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79 (2009) 025206 Not used to constrain the model. Previous works, mostly tree level: Meissner et al (1995  ) Oset et al (1985  )

23   , distributions Data handled with the help of R. Arndt Invariant mass distributions Phase space Full model H. Kamano, B. Julia-Diaz, TSH Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79 (2009) 025206

24 Properties of N* (strong)

25 I. Analytic continuation of T(W) to the unphysical sheet by using contour deformation II. Poles can be both in the non-resonant and resonant amplitudes III. One can search for poles of T as a function of W (p’s are arbitrary) Resonance states Extraction of Resonances from Meson-Nucleon Reactions. N. Suzuki, T. Sato, T.-S.H. Lee, Phys. Rev. C 79 (2009) 025205; arXiv:0910.1742, part of Suzuki’s PhD Thesis Resonance Mass

26 N. Suzuki, B. Julia-Diaz, H. Kamano, A. Matsuyama, TSH Lee, T Sato, arXiv: 0909.1356 Dynamical origin of N(1440) poles EBAC1357 - i 761364 - i 105 R. A. Arndt et al.(SAID)1359 - i 821388 - i 83 M. Doring et al.(JUELICH)1387 - i 147/21387 - i 71 1. Within our framework the three P11 states evolve from the same bare state. 2. In the fig: evolution of the pole position as we increase the self energy

27 EBAC current N*

28 Electromagnetic part

29 Goal : E.m. meson production Make use of the vast database for single and double pion photo and electroproduction reactions (JLAB, ELSA, MAMI, …) to: 1)Look for yet unseen resonances 2)Confirm the existence of the N*s seen in the hadronic reactions 3)Extract resonance properties: a)Couplings to meson-baryon b)Electromagnetic structure

30 Schematic view ** N N* N Consequence of Unitarity

31 Data considered: – Differential cross sections –  p   0 p (8793) –  p   + n (5063) – Photon asymmetry (Sigma) –  p   0 p(1204) –  p   + n (881) Consider up to W = 1.6 GeV. Single pion photoproduction Analysis performed at specific energies. B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, L.C. Smith, Phys. Rev. C77, 045205 (2008)

32 σ TOT (  b) p0pp0p Comparison to data Total cross section Differential cross sections Target polarization p+np+n Single pion photoproduction

33 Electroproduction Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C 80, 025207 (2009). 1. Fit1:  T +   L,  LT,  TT, p(e,e’  0 )p [Joo et al. PRL02] 2. Fit2 all p(e,e’  + )n, p(e,e’  0 )p 3. Fit3 p(e,e’  0 )p [Joo et al. PRL (2002 & 2003)] Consider W<1.65 MeV and Q 2 <1.45 GeV 2 No assumption on the Q 2 dependence of the helicity amplitudes Resonances which play a role: S 11, P 11, P 33, D 13 Could not fit all the structure functions simultaneously  Performed several fits to clarify the situation

34 Data at Q 2 <1.45 GeV 2 Fit1 Fit3 Fit2

35 Structure functions (ii) Q 2 = 0.4 GeV 2 Solid: Fit1 Dashed:Fit2 Dotted: Fit3 p+np+n Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C 80, 025207 (2009).

36 Coupled channels effects 1. Solid Full Fit1 2. Dashed only  N intermediate (in e.m. piece) 3. Data from http://clasweb.jlab.org/physicsdb/ Q 2 = 0.4 GeV 2

37    H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, arXiv:0909.1129 (2009) (Phys. Rev. C in press) Study of two pion photoproduction: Good description near threshold Reasonable shape of angular distributions Not good description of the total cross sections of p  0  0 and p  +  - above 1440 MeV - Previous (tree level) works include Meissner (1994  ) Gomez Tejedor, Roca,(1993  ) Fix et al (2005)

38 In progress (~ 2010) EBAC second generation model: Full Combined (global fit) analysis of:   N   N,  N (W<2 GeV)   N    N (W<2 GeV)   N   N (W<2 GeV)   N    N (W<2 GeV)   N   N (W<2 GeV) N* structure extraction   *N   N (W<2 GeV, Q 2 <4 GeV 2 )   *N    N (W<2 GeV)   *N   N (W<2 GeV) WEBPAGE: http://ebac-theory.jlab.org

39 BACKUP

40 EBAC@JLAB WEBPAGE: http://ebac-theory.jlab.org MANPOWER: Leader (ANL/JLAB): T.-S.H.Lee Postdocts (JLAB): H. Kamano S. Nakamura K. Tsushima A. Sibirtsev Starting date: 2006 EXTERNAL COLLABORATORS: T. Sato, N. Suzuki (Osaka) A. Matsuyama (Shizuoka) B. Julia-Diaz (Barcelona) B. Saghai, J. Durand (Saclay)

41 Timeline of EBAC results Full DCC Formalism A. Matsuyama, T.-S.H. Lee, T. Sato, Phys. Rep. (2007) Hadronic piece fixed (  N   N,  N)(W<2 GeV) B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, PRC (2007) J. Durand, B. Julia-Diaz, T.-S.H. Lee, T. Sato, B. Saghai, PRC (2008)  N   N (W<1.6 GeV) B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, LC Smith, PRC (2008)  N   N H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, PRC (2008) Analytic continuation N. Suzuki, T. Sato, T.-S.H. Lee, PRC (2008)  *    N (W<1.6 GeV, Q 2 <1.5 GeV 2 ) B. Julia-Diaz, H. Kamano, T.-S.H. Lee, A. Matsuyama, T.Sato,, PRC (2009)    N (W<1.8 GeV) H. Kamano, B. Julia-Diaz, T.-S.H. Lee, A. Matsuyama, T. Sato, PRC (2010)

42 Multi step (unitarity) How do we produce meson-baryon states? Directly Through MB states Through MMB states  We need to incorporate all the possibilities  Unitarity Coupled-channels σ TOT (  b) pp

43 Structure functions Q 2 = 1.45 GeV 2 p0pp0p Solid: Fit1

44 H. Kamano, B. Julia-Diaz, A. Matsuyama, T.-S.H. Lee, T. Sato, arXiv:0909.1129 (2009), Phys. Rev. C in press   , N* effects

45 PDG *s and N*’s origin Are they all genuine quark/gluon excitations? |N*> =| qqq > Is their origin dynamical?  E.g. some could be understood as arising from meson-baryon dynamics |N*>= | MB > Most of their properties are extracted from  N   N  N   N

46 Z terms Z


Download ppt "The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)"

Similar presentations


Ads by Google