Download presentation
Presentation is loading. Please wait.
Published byAlexia Beasley Modified over 8 years ago
1
Wavelet Transforms ( WT ) -Introduction and Applications
Presenter : Pei - Jarn Chen 2010/12/ E.E. Department of STUT .
2
Outline ☆ Theory ☆ Applications ☆ Matlab approach ☆ Reference
methodology develop history mathematic description ( CWT & DWT) ☆ Applications ☆ Matlab approach ☆ Reference
3
Introduction Wavelet theory Scaling
Multi-resolution analysis( MRA ) Mathematics description Wavelet transform ( CWT & DWT ) Wavelet family
4
Wavelet theory Time - frequency analysis Scaling Δt*Δf≧(1/4)*π
Heinsberg uncertainty principle Δt*Δf≧(1/4)*π
5
Wavelet theory Multiresolution analysis (MRA)
Multi_ scale analysis ( superposition ) dilation translation
6
Wavelet theory Multi_ space analysis + = decomposition reconstruction
Approximate space Detail space decomposition reconstruction
7
Wavelet theory Wavelet packet tree S A1 D1 AD2 AA2 DA2 DD2 AAA3 DAA3
DDD3
8
Wavelet Transform ( WT )
* Bandpass filter algorithm
9
Wavelet Transform ( WT )
10
Wavelet theory Develope history
1910 Haar orthogonal system 1982 Strömberg first continuous wavelet 1984 Grossman & Morlet-----wavelet transform 1986 Meyer & Mallat ----multiresolution analysis & mathematics description 1987 Tchamitchian biorthogonal wavelets 1988 Daubechies …………..
11
Wavelet Transform ( WT )
Mathematics description define j, k: scaling & translation parameters Φ: scaling function ( j=k=0, father function) Vj j, k : scaling & translation parameters : wavelet function (j=k=0, mother function) Oj
12
Wavelet Transform ( WT )
Refinement ( dilation ) equation Wavelet family
13
Wavelet Transform ( WT )
The properties of mother wavelet w t
14
Wavelet Transform ( WT )
Wavelets basis compactly supported wavelets Harr Daubechies………. not compactly supported wavelets Mexican hat function Littlewood-Paley Morlet Meyer’s B-spline………...
15
Wavelet Transform ( WT )
Harr (t) |()| |()| (t)
16
Wavelet Transform ( WT )
Meyer (t) |()| |()| (t)
17
Wavelet Transform ( WT )
Daubechies |()| (t) (t) |()|
18
Wavelet Transform ( WT )
Wavelet family
19
Wavelet Transform ( WT )
The technique of WT Continuous Wavelet Transform (CWT) a: scaling b: translation C=0.2247
20
Wavelet Transform ( WT )
Discrete Wavelet Transform (DWT) Scaling function : Wavelet function: a= 2 j CWT DWT
21
Applications A. 1-D 1. * db3, level 5, DWT # A sum of sines
1. Detection breakdown points 2. Identifying pure frequency 3.The effect of wavelet on a sine 4. The level at which characteristcs * db3, level 5, DWT
22
Applications 2.. db5, level 5, DWT # Frequency breakdown
1. Suppressing signals 2. Detecting long_term evolution db5, level 5, DWT
23
Applications 3. # Color AR(3) Noise Processing noise
2. The relative importance of different detail 3. The comparative importance D1 and A1 * db3, level 5, DWT
24
Applications 4. # Two Proximal Discontinuties
1. Detecting breakdown points 2. Move the discontinuities closer together and further apart * db2 and db7, level 5, DWT
25
Applications 5. # A Triangle + A Sine + noise
Detecting long-term evolution 2. Splitting signal components 3. Identifying the frequency of a sine * db5, level 6, DWT
26
Applications 6. # A Real three-day Electrical Consumption Signal
* db3, level 5, DWT
27
Applications--Velocity dispersion ( T. Onsay and A. G. Haddow, J
Applications--Velocity dispersion ( T.Onsay and A.G. Haddow, J. Acoust. Soc. Am. Vol. 95, no. 3, pp , 1994 ) Fig .Signal_1 and signal_2 following the input of glass ball on the free end of the beam Fig. The CWT of the acceleration signal_2
28
Applications B. 2-D ( imaging data compression, JPEG 2000)
29
Applications
30
Applications 1.
31
Matlab Approach (1) Using Wavelet Packets (2) Using Matlab command and
Matlab Approach (1) Using Wavelet Packets (2) Using Matlab command and *.m
33
Conclusion The self -adjusting windows structure for WT provides an enhanced resolution compared to the Short Time Fourier Transform (STFT). WT technique is not a panacea. It should be used with caution, depended by the problem itself.
34
Reference [1]. A. Abbate, J. Koay, et. al., ‘Signal detection and noise suppression using a wavelet transform signal processor: Application to ultrasoic flaw detection’, IEEE Trans. On Ultrason., Ferroelect., and Freq. Contr., vol. 44, no. 1, pp , 1997. [2]. B. M. Sadler, T. Pham, and L. C. Sadler,’ Optimal and wavelet-based shock wave detection and estimation’, J. Acoust. Soc. Am., vol. 104, no.2, pp , 1998 [3]. T. Onsay and A. G. Haddow, ’Wavelet transform analysis of transient wave propagation a dispersive medium’, J. Acoust. Soc. Am. Vol. 95, no. 3, pp , 1994 [4]. E. Meyer and T. Tuthill, ‘ Bayesian classification of ultrasound signal using wavelet coefficients’, IEEE Aerospace and Electronics Conference, vol. 1, pp , 1995 [5]. R. Polikar, L. Udpa, S. S. Udpa, and T. Taylor, ‘ Frequency invariant classification of ultrasound welding inspection signals’, IEEE Trans. On Ultrason., Ferroelect., and Freq. Contr., vol. 45, no. 3, p.p , 1998 [6]. W. X. Robert, S. Siffert and J. J. Kaufman, ’ Application of wavelet analysis to ultrasound characterization of bone’, IEEE 26 Asilomar conference, vol. 12, pp , 1994
35
Reference [7]. M. Unser and A. Aldroubi, ’A review of Wavelet in Biomedical Appliocations’, IEEE Proceedings, vol. 84, no. 4 , pp , 1996 [8]. S. Mallat, ’ Wavelet tour of signal processing’, Academic Press,1998 [9]. M. R. Rao and A. S. Boparadikor, ’ Wavelet Transforms introduction to Theory and Application’ , Addison-Wesley Press, London, U.K. 1998 [10]. Wavelet Toolbox : for Use with MATLAB, 1996 [11]. M. Akay, ’ Time frequency and wavelets in biomedical signal processing’, IEEE Press, U.S.A., 1998
36
Thank You !
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.