Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Univ. of Tokyo Dept. of Physics Back Ground Estimation One Lepton Mode 31 Aug 2007 Ginga Akimoto.

Similar presentations


Presentation on theme: "The Univ. of Tokyo Dept. of Physics Back Ground Estimation One Lepton Mode 31 Aug 2007 Ginga Akimoto."— Presentation transcript:

1 The Univ. of Tokyo Dept. of Physics Back Ground Estimation One Lepton Mode 31 Aug 2007 Ginga Akimoto

2 Dept of Physics Table of Contents  normal BG estimation (case :no SUSY & SUSY)  Causes of BG deviation  corrected BG-estimation method

3 Dept of Physics Back Ground Estimation ( case : no SUSY ) BG[Signal Region (MT>100)] shows close similarity to the shape of BG[Control Sample (MT<100)]. estimated BG,which is scale- converted BG[CS] (normalized by # of (mET=100-200)) is the same by 10% as BG[SR].

4 Dept of Physics Back Ground Estimation (case : existence of SUSY(SU3)) the case SUSY exists -> we can discover surplus events (SUSY signal) by this method.  Control Sample = Background dominant & similar to BG[SR]  Signal Region (low mET) = assume BG-dominant -> decide normalization constant (region:mET=100-200)  red marker: estimated BG, bold black line: Signal(=BG+SUSY) shaded area: Real BG, bold blue line: SUSY events somewhat overestimate BG (differ by about factor 2-3)

5 Dept of Physics Causes of BG deviation Control Sample[CS] includes measurable SUSY events  [CS] #SUSY < 0.1*#BG (mET=overall)  but #SUSY ~ #BG (mET>200)  overestimate : factor 2 to 3 normalization constant (mET=100-200)  [CS] #SUSY <0.1*#BG but [SR]  #SUSY ~ 0.5*#BG  overestimate : +50% >detail next pages

6 Dept of Physics Deviation : CS includes measurable SUSY. We use Sig[Control Sample (MT<100)] as Background dominant sample, but Sig[CS] includes considerable SUSY events.  [CS]: #SUSY < 0.1*#BG (overall)  but (mET>200) #SUSY is comparable to #BG  BG vs Sig : differ by a factor of 2-3 (large mET)

7 Dept of Physics BG Deviation : normalization constant We regard #(Sig[SR])/#(Sig[CS]) at mET=100-200 as the ideal normalization constant : #(BG[SR])/#(BG[CS]),but  Control Sample[CS] : #(SUSY)<<#(BG) so #(Sig)=#(BG)  Signal Region [SR] : #(SUSY) ~ 0.5*#(BG) <- not negligible

8 Dept of Physics Correction of estimated BG correction of normalization constant  close a observable value #(Sig[SR])/#(Sig[CS]) to the ideal normalization constant #(BG[SR])/#(BG[CS])  shift matching region lower: #(mET=100-200) -> #(mET=100-115) (we will #(mET=70-110),but yet)  -> minimize #(SUSY)/#(BG) @ Signal Region [SR] correction of Control Sample[CS] (remove SUSY events) BG[CS] = Sig-SUSY[CS] ~ Sig-α*Sig[SR] SUSY[CS] and SUSY[SR] are similar. SUSY[CS]=α*SUSY[SR] the factor α is # of SUSY ratio :α=#(SUSY[CS])/#(SUSY[SR]) (large mET region) Sig[SR]=SUSY + BG ~ SUSY (small mET region) Sig[SR](includes BG)<<Sig[CS] direct contribution of BG[SR] to BG[CS] : negligible

9 Dept of Physics Estimation of the SUSY ratio α = #(SUSY[CS])/#(SUSY[SR])  #SUSY[CS] = 2*#SUSY[MT=100-150] (more precisely ~ -10% )  #SUSY[CS]/#SUSY[SR] ~ #SUSY[CS*]/#SUSY[SR] ( ※ Control Sample prime [CS*]=2*(1.1)*#(100-150) ) #SUSY[CS*]/#SUSY[SR] ~ #Sig[CS*]/#Sig[SR] <-Observable value  only integrate mET>200 : to reduce effect of BG(tt->bblnln)  α= #(SUSY[CS])/#(SUSY[SR]) ~ #Sig[CS*]/#Sig[SR](mET>200) #(0-100) CS 2*#(100- 150) #(100-200) SU1173.916164.732136.585 SU221.448819.504816.2 SU3323.865283.926240.641 SU43530.32986.782240.8 tt-bblnln169.22165.021121.858 tt-bblnqq1465.5255.321828.6766 W668.4125.171515.2572 Transverse Mass (MT)

10 Dept of Physics ideal α vs estimated α SUSY[CS]=(#SUSY[CS]/#SUSY[SR])*SUSY[SR] ~ α*Sig[SR] ideal α #SUSY[CS]/#SUSY[SR] (mET=overall) estimated α #Sig[CS]/#Sig[SR]@(mET>200) <-Observable mSuGra modelideal αestimated α SU1 : Coannihilation0.5830.614 SU2 : Focus Point0.5560.684 SU3 : Bulk0.5910.612 SU4 : Low Mass0.6870.689

11 Dept of Physics Estimated BG : Corrected Control Sample  red marker : estimated Background  red line : real Background(=BG[CS])  bold black line : Sig(=BG+SUSY)[CS] mET ( Control Sample )

12 Dept of Physics Corrected Control Sample (other physical quantities) use the same α derived from mET & estimate BG=Sig-αSig[SR] Leading Jet PT Lepton PT # of Jet

13 Dept of Physics Corrected BG estimation using estimated new BG[CS] and new normalized constant, we estimate BG of Signal Region[SR]. red marker : new BG estimation, shaded area: real BG, green line : old BG estimation,

14 Dept of Physics SUSY(mSuGra) model dependence (mET) SU3 : Bulk SU1 : CoannihilationSU2 : Focus Point SU4 : Low Mass

15 Dept of Physics Error and applicable range of this method large deviation at SU4(Low Mass) -> mainly normalization constant: even in new normalization region (mET=100-115), Control Sample includes substantial SUSY events.->needs another method. Other Points -> model uncertainty and error of α (at least 10%), similarity between CS and SR(10%), normalization constant (less than 15% and can reduce it) SU4 : Low Mass

16 Dept of Physics Conclusion  Control Sample method : overestimate Background by factor 2 to 3  We can estimate Background of Signal Region (MT>100) (about 20% ~ accuracy) by means of Corrected Control Sample.  uncertainty of this method is normalization the SUSY ratio α estimation.(large Xsec SUSY(cf.SU4) cases -> error of normalization constant )


Download ppt "The Univ. of Tokyo Dept. of Physics Back Ground Estimation One Lepton Mode 31 Aug 2007 Ginga Akimoto."

Similar presentations


Ads by Google