Download presentation
Presentation is loading. Please wait.
Published byGrace Norton Modified over 9 years ago
1
Accretion wake of recoiled black holes Roya Mohayaee CNRS, Institut d’Astrophysique de Paris Jacques Colin Observatoire de la Côte d’Azur, Nice Joe Silk University of Oxford astro-ph/07093321 J-P Lasota conference, Wroclaw 2007
2
Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves formation of a new central BH HST : colliding galaxies in Canis Major NGC 2207 –IC 2163
3
Black hole & dark matter Adiabatic accretion: f final (E final,L final ) = f initial (E initial,L initial ) Initially : initial ~ r -
4
Black hole & dark matter (Young 1980, Gondolo & Silk 1999) Without BH : initial ~ r - With BH : final ~ r -(9-2 )/(4- )
5
Absolute luminosity (L) of BH in -rays + L = luminosity factor x ∫ 2 dV /s luminosity factor = [ N /m 2 ] c 4 /cm 3 /s/Gev 2 For M31: Fornasa et al 2007
6
Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves If isotropic formation of a new central BH HST : colliding galaxies in Canis Major NGC 2207 –IC 2163
7
Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves Ejection of the BH From the galaxy If isotropicIf anisotropic formation of a new central BH HST : colliding galaxies in Canis Major NGC 2207 –IC 2163
8
Ejection of a black hole during galaxies mergers
9
Spin=zero X=0.38
10
Ejection of a black hole during galaxies mergers spin ≠ 0 recoil velocity 4000 km/s Campanelli et al 2007
11
Orbit of an ejected BH Virial radius V~0 low high v high
12
Density profile of the accretion wake Cold medium >Bondi-Hoyle accretion (1944) Two-body problem +mass conservation V r (q) dq (x) dx= (q) dq
13
Density profile of the accretion wake Analytic solution for stationary BHs : (r)~ 1/√r hot medium (e.g. Maxwellian velocity distribution) > Danby & Camm (1957) V Jean’s theorem numerical solution for density
14
Wake density : radius of influence
15
Wake density : hot versus cold medium Hot environment
16
Wake density : hot versus cold medium Hot environmentCold environment
17
Constant density contours : large
18
Constant density contours : reducing
19
Wake density contours Wake density contours, small
20
Highest density at the apapsis passage Virial radius V~0 low high v high
21
Time to reach the apapsis Initial velocity of BH / escape velocity
22
Absolute luminosity of a recoiled BH in -rays L(M,z) = [ N /m 2 ] ∫ 2 dV /s L= 10 25 (1+z) 4 (M/M o ) R 2 cutoff /s L BH / L host galaxy
23
Diffused -ray background
24
BH Mass function Press & Schechter (1974) Density peaks in initially random gaussian field collapse to form ‘‘galaxies’’ Number density of galaxies of mass M at redsift z N(M,z)
25
Diffused -ray background =H 0 ∫∫ t(M,z) L(M,z) N(M,z) dM dr(z) Time the BH spends at apapsis 10 25 (1+z) 4 (M/Mo) R 2 cutofff /s Press-Schechter mass function
26
Time spent at apapsis =H 0 ∫∫ t(M,z) L(M,z) N(M,z) dM dr(z)
27
> 10 -8 cm -2 s -1 sr -1 Future Prospects: Confronting the observations
28
HESS, VERITAS MAGIC GLAST EGRET 10 - 12 10 -7 10 -11 10 -10 10 -9 10 -8 cm -2 s -1 sr -1 > 10 -8 cm -2 s -1 sr -1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.