Download presentation
Presentation is loading. Please wait.
Published byVictoria Carson Modified over 9 years ago
1
Kompleksitas Waktu Asimptotik CSG3F3 Lecture 5
2
2 Intro to asymptotic f(n)=an 2 + bn + c RMB/CSG3F3
3
3 Fitting curves to the data RMB/CSG3F3
4
4 f 1 (n)=0.0007772 n 2 + 0.00305n + 0.001 home computer data f 2 (n)=0.0001724 n 2 + 0.00040n + 0.100 desktop computer data RMB/CSG3F3
5
5 Coefficients (a,b,c) associated with particular –computers, –languages, and –compilers RMB/CSG3F3
6
6 Introducing the language of O- notation Dominant terms Ignoring the constant of proportionali ty RMB/CSG3F3
7
7 O(n 2 ) RMB/CSG3F3
8
8 Formal definition RMB/CSG3F3
9
9 Asymptotic Notations Big-oh ( ) Big-omega ( ) Big-theta ( ) Little-oh ( ) Little-omega ( ) RMB/CSG3F3
10
10 -notation (g(n))={f(n): there exist positive constants c and nonnegative integer n o such that 0≤f(n) ≤cg(n) for all n ≥ n o } f(n) = O(g(n)) indicates that f(n) is a member of the set O(g(n)) RMB/CSG3F3
11
11RMB/CSG3F3
12
12 Proof 100n+5 = O(n 2 ) i.100n+n = 101n, 101n ≤ 101n 2, for all n≥5 c=101, n o =5 ii.100n+5n= 105n, 105n ≤ 105n 2, for all n≥1, c=105, n o =1 RMB/CSG3F3
13
13 1.T(n)=n+1024=O(n) 2.T(n)=1+2+…+n=O(n 2 ) 3.T(n)=10n 2 +4n+2=O(n 2 ) 4.T(n)=n 2 /10+2 n =O(2 n ) 5.T(n)=6*2 n +n 2 =O(2 n ) 6.T(n)=1 k + 2 k +…+n k =O(n k+1 ) 7.T(n)=log n 3 = O(log n) RMB/CSG3F3
14
14 8.T(n)=10 log 3 n =O(n) 9.T(n)=2n + 3 2 log n=O(n) 10.T(n)=n!=O(n n ) RMB/CSG3F3
15
15 -notation (g(n))={f(n): there exist positive constants c and nonnegative integer n o such that f(n) ≥cg(n) ≥0 for all n ≥ n o } f(n) = (g(n)) indicates that f(n) is a member of the set (g(n)) RMB/CSG3F3
16
16RMB/CSG3F3
17
17 Proof 1.n 3 = (n 2 ): n 3 ≥ cn 2 for all n ≥ 0, We can select c=1 and n 0 =0 2.3n +2 = Ω(n) : 3n + 2 ≥ 3n for n ≥ 1 3.10n 2 + 4n + 2 = Ω (n 2 ) : 10n 2 + 4n + 2 ≥ n 2 RMB/CSG3F3
18
18 -notation (g(n)) ={f(n) : there exist positive constants c 1, c 2, and nonnegative integer n o such that c 2 g(n)≥f(n) ≥c 1 g(n)≥0 for all n ≥ n o } f(n) = (g(n)) indicates that f(n) is a member of the set (g(n)) RMB/CSG3F3
19
19RMB/CSG3F3
20
20 Proof ½n(n-1)= (n 2 ) Prove the right inequality (upper bound) ½n(n-1)=½n 2 -½n ≤ ½n 2, for all n ≥ 0 Prove the left inequality (lower bound) ½n(n-1)=½n 2 -½n ≥ ½n 2 -½n ½n, for all n ≥ 2 = ¼n 2 c 1 = ½, c 2 = ¼, n 0 =2 RMB/CSG3F3
21
21 3n + 2 = Θ(n) as 3n + 2 ≥ 3n for all n ≥2, and 3n + 2 ≤ 4n for all n ≥2, so c 1 =3, c 2 =4 n 0 =2. RMB/CSG3F3
22
22 o-notation o(g(n))={f(n) : for any positive constants c >0, there exist a constant n o > 0 such that 0≤f(n) <cg(n) for all n ≥ n o } Example: 2n=o(n 2 ), but 2n 2 ≠o(n 2 ) RMB/CSG3F3
23
23 -notation (g(n))={f(n): for any positive constants c>0, there exist a constant n o >0 such that f(n) >cg(n) ≥0 for all n ≥ n o } Example: n 2 /2= (n), but n 2 /2≠ (n 2 ) RMB/CSG3F3
24
24 Property of asymptotic If f 1 (n)єO(g 1 (n)) and f 2 (n)єO(g 2 (n)), then f 1 (n) + f 2 (n) є O(max(g 1 (n),g 2 (n))) If f 1 (n)єO(g 1 (n)) and f 2 (n)єO(g 2 (n)), then f 1 (n)*f 2 (n) є O(g 1 (n)*g 2 (n)) (also work for and ) RMB/CSG3F3
25
25RMB/CSG3F3
26
26RMB/CSG3F3
27
27RMB/CSG3F3
28
28 Asymptotic Analogy RMB/CSG3F3
29
29 Complexity Classes RMB/CSG3F3
30
30 The Seven Most Important Functions 1.The Constant Function f(n) = c, for some fixed constant c. 2. The Linear Function f(n) = n. 3. The Quadratic Function f(n) = n 2. RMB/CSG3F3
31
31 The Seven Most Important Functions 4. Cubic function f(n) = n 3. Polynomials f(n) = a 0 + a 1 n + a 2 n 2 + …..+ a d n d integer d is called the degree of the polynomial. 5. Exponential Function f( n) = b n, where b is a positive constant, called the base and the argument n is the exponent. RMB/CSG3F3
32
32 The Seven Most Important Functions 6. Logarithm Function f(n) = log b n. 7. N-log-N Function f(n) = n log n. RMB/CSG3F3
33
33 Comparing Growth Rates constantlogarithmlinearn-log-nquadraticcubicexponent 1log nnn log nn2n2 n3n3 a n ( a > 1) RMB/CSG3F3
34
34 Growth of Function Values RMB/CSG3F3
35
35 Basic Efficiency Class classname 1 log n n n log n n 2 n 3 2 n n! constant logarithmic linear n log n quadratic cubic exponential factorial polynomial exponential RMB/CSG3F3
36
36 Exercises Determine whether the following assertions are true or false –n(n+1)/2 є O(n 3 ) –n(n+1)/2 є O(n 2 ) –n(n+1)/2 є (n 3 ) –n(n+1)/2 є (n) RMB/CSG3F3
37
37 References Levitin, Anany. The design and analysis of algorithms. Pearson Education. 2003. Cormen., Leiserson., Rivest. Introduction to algorithms. RMB/CSG3F3
38
38 Next.. Mathematical analysis of nonrecursive algorithm RMB/CSG3F3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.