Download presentation
Presentation is loading. Please wait.
Published byDora Jessica Flynn Modified over 8 years ago
1
CCAlkynes
2
Synthesis of Acetylene Heat coke with lime in an electric furnace to form calcium carbide. Then drip water on the calcium carbide. coke lime *This reaction was used to produce light for miners’ lamps and for the stage. *
3
H CC Acidity of Acetylene and Terminal Alkynes
4
In general, hydrocarbons are exceedingly weak acids CompoundpK a HF3.2 H 2 O16 NH 3 36 45 CH 4 60 H2CH2CH2CH2C CH 2 Acidity of Hydrocarbons
5
Acetylene is a weak acid, but not nearly as weak as alkanes or alkenes. CompoundpK a HF3.2 H 2 O16 NH 3 36 45 CH 4 60 H2CH2CH2CH2C CH 2 HCCH 26 Acetylene
6
C H H + + 10 -60 10 -45 10 -26 sp 3 C : sp 2 spHC C C CHC C CC : : Electrons in an orbital with more s character are closer to the nucleus and more strongly held. Carbon: Hybridization and Electronegativity
7
Objective: Prepare a solution containing sodium acetylide Will treatment of acetylene with NaOH be effective? NaCCH H2OH2OH2OH2O NaOH + HC CH NaC CH+ Sodium Acetylide
8
No. Hydroxide is not a strong enough base to deprotonate acetylene. H2OH2OH2OH2O NaOH + HC CH NaC CH+– HO.... : H CCH HO H.... + + CCH: – weaker acid pK a = 26 stronger acid pK a = 16 In acid-base reactions, the equilibrium lies to the side of the weaker acid. Sodium Acetylide
9
Solution: Use a stronger base. Sodium amide is a stronger base than sodium hydroxide. NH 3 NaNH 2 + HC CH NaC CH+– H2NH2NH2NH2N.. : H CCHH.. + + CCH: – stronger acid pK a = 26 weaker acid pK a = 36 Ammonia is a weaker acid than acetylene. The position of equilibrium lies to the right. H2NH2NH2NH2N Sodium Acetylide
10
Preparation of Alkynes having other functions by reactions with Acetylide and Terminal Alkynes
11
Acetylides as nucleophiles
17
Preparation of Alkynes by Alkylation of Acetylene and Terminal Alkynes
18
Carbon-carbon bond formation alkylation of acetylene and terminal alkynes Functional-group transformations elimination There are two main methods for the preparation of alkynes: Preparation of Alkynes
19
H—C C—H R—C C—H C—R Alkylation of Acetylene and Terminal Alkynes
20
RX SN2SN2SN2SN2 X–X–X–X–:+ C–: H—C C—RH—C+ The alkylating agent is an alkyl halide, and the reaction is nucleophilic substitution. The nucleophile is sodium acetylide or the sodium salt of a terminal (monosubstituted) alkyne. Alkylation of Acetylene and Terminal Alkynes
21
NaNH 2 NH 3 CH 3 CH 2 CH 2 CH 2 Br (70-77%)HCCH HC CNa HC C CH 2 CH 2 CH 2 CH 3 Example: Alkylation of Acetylene
22
NaNH 2, NH 3 CH 3 Br CHCHCHCH (CH 3 ) 2 CHCH 2 C CNa (CH 3 ) 2 CHCH 2 C (81%) C—CH 3 (CH 3 ) 2 CHCH 2 C Example: Alkylation of a Terminal Alkyne
23
1. NaNH 2, NH 3 2. CH 3 CH 2 Br (81%)H—CC—H 1. NaNH 2, NH 3 2. CH 3 Br C—H CH 3 CH 2 —C C—CH 3 CH 3 CH 2 —C Example: Dialkylation of Acetylene
24
Effective only with primary alkyl halides Secondary and tertiary alkyl halides undergo elimination Limitation
26
E2 predominates over S N 2 when alkyl halide is secondary or tertiary E2 C–: H—C + C H—C —H—H—H—H C C X–X–X–X– : + Acetylide Ion as a Base H C C X
27
Preparation of Alkynes by Elimination Reactions
28
Geminal dihalide Vicinal dihalide X C CXHH XX CCHH The most frequent applications are in preparation of terminal alkynes. Preparation of Alkynes by "Double Dehydrohalogenation"
29
(CH 3 ) 3 CCH 2 —CHCl 2 1. 3NaNH 2, NH 3 2. H 2 O (56-60%) (CH 3 ) 3 CC CH Geminal dihalide Alkyne
30
NaNH 2, NH 3 H2OH2OH2OH2O (CH 3 ) 3 CCH 2 —CHCl 2 (CH 3 ) 3 CCH CHCl (CH 3 ) 3 CC CH CNa(slow) (slow) (fast) Geminal dihalide Alkyne
31
CH 3 (CH 2 ) 7 CH—CH 2 Br Br 1. 3NaNH 2, NH 3 2. H 2 O (54%) CH 3 (CH 2 ) 7 C CH Vicinal dihalide Alkyne
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.