Presentation is loading. Please wait.

Presentation is loading. Please wait.

AClassical Description >E = T + V Harry Kroto 2004.

Similar presentations


Presentation on theme: "AClassical Description >E = T + V Harry Kroto 2004."— Presentation transcript:

1 AClassical Description >E = T + V Harry Kroto 2004

2 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  Harry Kroto 2004

3 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 Harry Kroto 2004

4 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 Harry Kroto 2004

5 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] Harry Kroto 2004

6 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM Harry Kroto 2004

7 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM G Analysis > Pattern recognition; assign Q numbers Harry Kroto 2004

8 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM GAnalysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence Harry Kroto 2004

9 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term Harry Kroto 2004

10 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term JInformation obtainable from the spectrum > B values structures Harry Kroto 2004

11

12 AClassical Description >E = T + V B QM description > the Hamiltonian H  = E  CSolve the Hamiltonian > Energy Levels E (n) = -R/n i 2 DSelection Rules > Allowed Transitions  n = n 2 – n 1,  J = ±1 ETransition Frequencies >  F = - R[ 1/n 2 2 – 1/n 1 2 ] FIntensities > THE SPECTRUM J Analysis > Pattern recognition; assign Q numbers HExperimental Details > spectrometers, laser fluorescence IMore Advanced Details > Relativistic Effects; Fermi contact term JInformation obtainable from the spectrum > B values structures Harry Kroto 2004


Download ppt "AClassical Description >E = T + V Harry Kroto 2004."

Similar presentations


Ads by Google