Presentation is loading. Please wait.

Presentation is loading. Please wait.

15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 1/22 Search for New Physics with the LHCb Detector Niels Tuning NIKHEF/

Similar presentations


Presentation on theme: "15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 1/22 Search for New Physics with the LHCb Detector Niels Tuning NIKHEF/"— Presentation transcript:

1 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 1/22 Search for New Physics with the LHCb Detector Niels Tuning NIKHEF/ Free University Amsterdam On behalf of the LHCb collaboration MIAMI2005, December 15 th 2005

2 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 2/22 Outline GUT + Neutrino mixing  Predictions for b  s  Signatures in LHCb LHCb signatures:  The Box Diagram B s mixing: B s  D s - π + CP phase: B s  J/ ψφ  The Penguin Diagram/Rare Decay Rare decays: B (s)  (K * ) μμ Let’s consider a GUT scenario and show the possibilities for the LHCb experiment…

3 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 3/22 Grand Unified Theories Can the large neutrino mixing angles be transferred to the hadronic sector?  GUT unifies quarks and leptons Add reference 15 Fermions Simplest GUT: SU(5) Down type quarks with leptons in mulitplet:

4 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 4/22 To SUSY or not to SUSY SUSY GUT vs non-SUSY GUT:  Unification: 3 σ vs 12 σ  Scale: 3.10 16 vs 10 15 GeV τ p decay ~ M GUT 4  R-parity in SUSY can prevent unwanted baryon number violation  sin 2 θ W from SUSY in better agreement with data Phys.Lett.B592(1),2004 Amaldi, de Boer, Furstenau Phys.Lett.B260(447),1991 Non-SUSY SUSY

5 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 5/22 Why SO(10) ?? 1)Small extension of SU(5)  SO(10)  SU(5) x U(1)  16 = 10 +  5 + 1 2)It nicely incorporates the right-handed ν  The see-saw mechanism “explains” small non-zero neutrino mass, and even relates M νR  M GUT The model: SUSY SO(10) Chang, Masiero, Murayama Phys.Rev.D67 (075013), 2003, hep-ph/0205111 Barbieri, Hall Phys.Lett.B338(212),1994, hep-ph/9408406 Jager, Nierste Eur.Phys.J.C33(256),2004 hep-ph/0312145 Harnik,Larson,Murayama,Pierce Phys.Rev.D69(094024),2004 hep-ph/0212180  It relates neutrino mixing to squark mixing!

6 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 6/22 The model: SUSY SO(10) Chang, Masiero, Murayama Phys.Rev.D67 (075013), 2003, hep-ph/0205111 Y U contains the large top coupling Y U can be symmetric. In Y u diagonal basis we have: Superpotential: (16 are fermions, 10 Higgses) Break to SU(5) Break to MSSM (+rh ν ): Without neutrino mass, U MNS could be rotated away Neutrino mixing angle bRbR ~ Just as in the SM, we rotate the d-quarks

7 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 7/22 Neutrino mixing: Super Kamiokande Phys.Rev.Lett.81 (1562),1998, hep-ex/9807003 Δm 2 =2.2 10 -3 eV 2, sin 2 θ 23 =1 ν μ ↔ν τ Oscillation: ν μ ↔ν τ CC reaction: ν μ →μ μ-detection Cosmic ray on atmosphere: π - → e - ν e ν μ ν μ Courtesy Univ.of Hawaii L/E (km/GeV) Phys.Rev.D71:112005,2005, hep-ex/0501064

8 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 8/22 Consequences:  No effect in s R ↔ b R (i.e. CKM), because there is no right handed coupling  Observable effects in mixing between s̃ ↔ b̃ The Box Diagram: –B s mixing: B s  D s - π + –CP phase: B s  J/ ψφ LHCb The Penguin Diagram/Rare decay: –Rare decays: B (s)  (K * ) μ + μ - Neutrino mixing  squark smixing

9 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 9/22 Remember B 0 d oscillations:  Predicted heavy particle…  m top >50 GeV Needed to break GIM cancellations B s –B s oscillations: “Box” diagram –  m s SM  |V ts 2 | Size of the Box: B s mixing ( Δ m s ) Phys.Lett.B192:245,1987 New particles can affect the Box:  m s  |V ts +V NP | 2 ?

10 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 10/22 Phase of the Box: B s  J/ ψφ Δm s is senstive to | A ( B 0   B 0 )| We can also probe the phase of A ( B 0   B 0 )|  Interference of two diagrams B 0 s  J/ψφ: Golden decay  Theoretically clean sin φ s = - Aηλ 4 / Aλ 2 = -2ηλ 2  - 0.03  Any larger asymmetry means new physics…  New physics appears in the box, as before: Ball et al,Phys.Rev.D69(115011),2004 hep-ph/0311361 |e | i(φ s + φ NP ) B 0 s  J/ψφ ?

11 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 11/22 Rare decays: B (s)  (K * ) μ + μ - s̃ ↔ b̃ also appears in Penguin Diagram  Affects rare decay B 0  K * μ + μ - Blazek,Dermisek,Raby Phys.Rev.D65(115004),2002 hep-ph/0201081 Dedes,Dreiner,Nierste Phys.Rev.Lett.87(251804),2001 hep-ph/0108037 The “smoking gun” of SO(10) Yukawa unification... s s μ-μ- μ-μ- μ+μ+ μ+μ+ μ+μ+ μ-μ- s̃ Tevatron: BR <1.5 10 -7 SM: BR=3.4 10 -9  Similarly, B s  μ + μ - is very promising SO(10) unifies fermion masses, and predicts:  tan β = m t (M Z )/m b (M Z )~ 40-50

12 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 12/22 Consequences:  No effect in s R ↔ b R (i.e. CKM), because there is no right handed coupling  Observable effects in mixing between s̃ ↔ b̃ The Box Diagram: –B s mixing: B s  D s - π + –CP phase: B s  J/ ψφ LHCb The Penguin Diagram/Rare decay: –Rare decays: B (s)  (K * ) μ + μ - Neutrino mixing  squark smixing

13 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 13/22 What is LHCb? pp with  s =14 TeV L = 2.10 32 cm -2 s -1 10 12 b-hadrons per year Start in July 2007 Aim: measure CP violation and rare decays B s mixing CKM angles α, β, γ Small branching fractions … 20 meter 10 meter

14 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 14/22 Status Cryogenic services line LHC dipole LHC tunnel LHC accelerator: LHCb experiment : 1 December 2005 RICH Magnet Muon Filter

15 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 15/22 LHCb spectrometer VELO VELO: Vertex Locator TT, T1, T2, T3: Tracking stations RICH1-2: Ring Imaging Cherenkov detectors ECAL, HCAL: Calorimeters M1–M5: Muon stations proton beam collision point ~1 cm B Dipole magnet

16 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 16/22 Why LHCb? 1.High cross section LHC energy 2.Large acceptance b’s produced forward 3.Trigger ↓ Low p T Leptons+hadrons 4.Particle identification with RICH TevatronLHCbATLAS/CMS √s (TeV) 2 14 σ (pp  bb)( μ b)100 500 L ( cm -2 s -1 ) 20084.10 31 2.10 32 10 33 p T of B-hadron η of B-hadron

17 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 17/22 B s mixing, Δ m s in LHCb Measure B 0 s  B 0 s  Need to know how B 0 s was produced: flavour tagging  Need to know how B 0 s decayed: use B s  D s - π + btbt BsBs KK KK  ,K   DsDs Primary vertex B s →D s - π + (tagged as B s )

18 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 18/22 B s mixing, Δ m s in LHCb  5  observation of B s oscillations for  m s < 68 ps –1 with 2 fb –1 Prediction for Δm s from UT fit: Standard Model: 20 ps -1 UT fit Present experimental limit: >14.5 ps -1 Tevatron 5 σ observation in 1 year: <68 ps -1 LHCb Measurement of  m s is one of the first physics goals  Expect 80k B s  D s - π + events per year (2 fb –1 )  Excellent proper time resolution is vital: Average  τ ~ 40 fs 5 σ observation for Δ m s =20 ps -1 :  Tevatron 6 fb –1 all years?  ATLAS/CMS 30 fb –1 3 years  LHCb 1/4 fb –1 2 months B s  D s -  + proper time resolution  τ ~ 40 fs

19 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 19/22 Phase: B s  J/ ψφ in LHCb Dunietz et al, Phys.Rev.D63(114015),2001 hep-ph/0012219 A  = CP odd & A 0,|| = CP even B s  J/ψφ (B s tagged)  Proper time τ (ps) ~1-cos 2 θ ~1+cos 2 θ  cos(θ) B 0 s  J/ψφ:  Theoretically clean and experimentally easy: J/ψ→µµ : trigger J/ψ(µµ)φ(KK): 4 charged tracks  Annual yield: 120k events, S/B~3 But need angular analysis  Final state contains a mixture of CP-odd and CP-even Fit for sin  s,  s and CP-odd fraction  (needs external  m s ) + + - -

20 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 20/22 Rare Decays: B (s)  (K * ) μ + μ - in LHCb B 0  K * μ + μ -  Annual yield: 4400 events, S/B~3 BR(B  K * μ + μ - )~1.2 10 -6  Sign for new physics: FB-asymmetry LHCb B s  μ+μ- mass resolution: Exclude BR>2.10 -8 with 8 fb -1 B s  μ + μ -  Maybe LHCb first hot result!  BR(B s  μ + μ - )~3 10 -9 : 30 evts/year  Background estimate difficult: Generate 10 7 (b →μ, b →μ)-events 0 events pass selection But in 1 year we have 10 10 (b →μ, b →μ)… LHCb (m μμ /m B ) 2 (m μμ ) 2 CDF+D0 R.Bernhard et al hep-ex/0508058 Theory Thesis P.Koppenburg Hurth, Rev.Mod.Phys.75(1159), 2003. hep-ph/0212304

21 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 21/22 So, what do we have: B s  D s - π +  Additional contribution in box diagram  80k events per year  proper time resolution is excellent  τ ~ 40 fs B s →J/ψφ:  Additional phase in box diagram  120k events per year  Theoretically clean and experimentally easy B 0 → K * μ + μ -  Annual yield: 4400 events, S/B~3  Sign for new physics: FB-asymmetry B s →μ + μ -  Annual yield: 30 evts/year  Very sensitive to new physics s μ+μ+ μ-μ- μ+μ+ μ-μ- s̃  CP: CKM angles  angle γ (B s →D s K, B→D 0 K *, B (s) →ππ/KK)  angle α (B→πππ)  angle β (B→J/ψK s B→φK s,…)  BR(B →K * γ ), B c, …, … Many other things…

22 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 22/22 Summary Neutrino mixing, combined with SO(10) GUT, predicts visible effects in LHCb:  The Box Diagram B s mixing: B s  D s - π + CP phase: B s  J/ ψφ  The Penguin Diagram/Rare Decay Rare decays: B (s)  (K * ) μμ + = ν µ  ν τ mixing SO(10) GUTObservable effect in LHCb

23 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 23/22 Backup Slides

24 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 24/22 bsγbsγ Experimental constraints  BR(b  s γ ) SM = (3.6±0.3) 10 -4  BR(b  s γ ) exp = (3.3±0.3) 10 -4 BR(B  K * γ ) exp = (4.01±0.20) 10 -5 It is possible to increase Δm s, given BR(b  s γ ): Example: m g ~200 GeV, m R3 ~1200 GeV:  BR(b  s γ ) : +16%  Δm s : 30 ps -1  sin2 β B→φKs : -0.5 Harnik,Larson,Murayama Phys.Rev.D69(094024),2004 hep-ph/0212180

25 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 25/22 SM vs MSSM: B s  μ + μ - MSSM parameter scan: Tevatron excluded A.Dedes, Mod.Phys.Lett.A18(2627),2003, hep-ph/0309233 SMMSSM

26 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 26/22 B 0  X s μμ BR(B 0  X s μμ ) well measured Additional handle: FB-asymmetry Annual yield: 4400 events, S/B~3 Ali et al Phys.Rev.D61(074024),2000, hep-ph/9910221 μ μ

27 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 27/22 Comparison to other experiments BsDsπBsDsπ TevatronLHCbATLAS Mass resolution (MeV) 201446 τ resolution (fs)10040100 Tagging ε D 2 (%)1.464 L (fb -1 )0.4230 years113 BsDsπBsDsπ 90080k8k S/B23>1 B s  J/ψφ TevatronLHCbATLASCMS L (fb -1 )0.26023010 years-131 B s  J/ψφ 203120k300k50k S/B~23310 σ(sin φ s )-0.060.040.028 B s  μμ TevatronLHCbATLASCMS PT μ min (trigger) 21.263 L (fb -1 )210 Mass resolution (MeV) 90188046 B s  μμ / year 13097 background / year 4<100<20<1 Numbers obtained from various presentations in the last year  No explicit blessing, just implicit... GENERAL TevatronLHCbATLAS/CMS √s (TeV) 2 14 σ (pp  bb)( μ b)100 500 L ( cm -2 s -1 ) 20084.10 31 2.10 3 2 10 33 BR @90%CL: <7.10 -9

28 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 28/22 SU(5): The simplest GUT Structure:  Fermions: 10 +  5  5 = ( 1,2) + (  3,1) 10 = ( 1,1) + (  3,1) + ( 3,2) Note: From  5 follows: q d =1/3 q e From 10 follows: q u =-2 q d Relation between charge and color 24 Bosons The simplest GUT is SU(5)  24 gauge bosons 8 gluons 4 W,Z, γ 12 bosons –3 coloured Y (q=-1/3) –3 coloured X (q=-4/3)  X,Y sometimes called leptoquarks or Higgs triplets  B, L violated, but B-L conserved Add reference 15 Fermions

29 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 29/22 p π0π0 e+e+ GUT: Proton decay… Super-Kamiokande limits:  τ p >5. 10 33 years Corresponding to <1 kg of the earth Phys.Rev.Lett.81 (3319) 1998, hep-ex/9806014 m p =935 MeV Data Proton Decay MC

30 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 30/22 SO(10) SO(10)  SU(5) x U(1)  16 = 10 +  5 + 1  Fermions: 10=[Q,u c,e c ]  5 = [d c,L] 1 = ν R  Multiplets like: (s r R,s b R,s g R, ν μL,μ L ) and (b r R,b b R,b g R, ν τL,τ L ) 10 55 1 SU(5) Question:  What does the presence of the right- handed neutrino imply, given the neutrino mixing? So, SO(10)…  … unifies all fermions in 1 multiplet  … breaks simply to the Standard Model  … explains bizarre charge assignments  … obtains unification (in its supersymmetric version)  … accomodates p decay bounds (due to big M GUT )  … includes the right-handed neutrino

31 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 31/22 Why SO(10) ?? 1)Small extension of SU(5)  SO(10)  SU(5) x U(1)  16 = 10 +  5 + 1 2)It nicely incorporates the right-handed ν  The see-saw mechanism “explains” small non-zero neutrino mass, and even relates M νR  M GUT 3)It relates neutrino mixing to squark mixing The model: SUSY SO(10) Chang, Masiero, Murayama Phys.Rev.D67 (075013), 2003, hep-ph/0205111 Y U contains the large top coupling Y U can be symmetric. In Y u diagonal basis we have: Superpotential: (16 are fermions, 10 Higgses) Break to SU(5): Break to MSSM (+rh ν ): Neutrino mixing angle bRbR Without neutrino mass, U MNS could be rotated away H u, H d … v u /v d =tanβ

32 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 32/22 S0(10) and see-saw So SO(10) … …contains the right handed neutrino  Its mass arrises naturally through the see-saw mechanism M ν R ~v 2 /m ν M ν R = (246 GeV) 2 /0.05eV =10 15 GeV GUT scale: 10 15 GeV  coincedence?

33 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 33/22 Neutrino masses: seesaw Dirac masses: Majorana mass for right-handed ν : From neutrino mixing: Relation between m ν, M EW, M GUT … ν =  ν

34 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 34/22 Neutrino mixing: SNO SNO Coll., Q.R. Ahmad et al. Phys.Rev.Lett.89 (011302),2002, nucl-ex/0204009 8 B →ν e MSW oscillations: ν e →ν μτ Δm 2 =5.0 10 -5 eV 2, tan 2 θ 12 =0.34 Δm 2 =8.0 10 -5 eV 2, tan 2 θ 12 =0.45 SNO Coll., Q.R. Ahmad et al. Phys.Rev.Lett.89 (011302),2002, nucl-ex/0204009, nucl-ex/0502021

35 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 35/22 EDM of the Neutron Standard Model: d n <10 -31 e cm  A nonzero value is forbidden by P- and T-invariance SUSY: d n <10 -25 e cm LaboratoryLimityear ILL <1.2 10 -25 ‘90 PNPI<0.97 10 -25 ‘96 ILL <0.63 10 -25 ‘99 ILL <1 10 -26 ‘04 PSI<2 10 -28 ‘05 LANL,ILL<5 10 -28 ’10? Larmor spin Precession Phys.Rev.Lett.82(907),1999 J.Ellis, Nucl.Instrum.Meth.A284(33),1989

36 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 36/22 µ→e γ Experimental Limit (MEG Coll. At PSI)  BR( µ→e γ )<1.2 10 -11 BR( µ→e γ ) SM =0 J.Hisano et al.,Phys. Lett. B391 (1997) 341 R. Barbieri et al.,Nucl. Phys. B445(1995) 215 SU(5) with right-handed neutrinos Experimental Bound

37 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 37/22 Not only SUSY can cause observable effects… Composing new models which seek to explain the observed hierarchy of masses and the CKM matrix is a cottage industry, with very fruitful discussions between theory and experiment…

38 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 38/22 B mixing Decay probability P(B 0  B 0 ) P(B 0   B 0 ) Probability that B 0 decays as  B 0, or B 0 :

39 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 39/22 CKM

40 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 40/22 Computing  m d : Mixing Diagrams Dominated by top quark mass: GIM(i.e. V CKM unitarity): if u,c,t same mass, everything cancels!

41 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 41/22 LHCb yields and background Nominal year = 10 12 bb pairs produced (10 7 s at L=2  10 32 cm  2 s  1 with  bb =500  b) Yields include factor 2 from CP-conjugated decays Branching ratios from PDG or SM predictions R.Forty, CKM 2005

42 15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 42/22 Baryon Asssymetry Buchmüller, Wyler Phys.Lett.B521 (291),2001 hep-ph/0108216 1)Leptogenesis 2)Baryogenesis through sphaleron


Download ppt "15 Dec 2005Search for New Physics with the LHCb detector - MIAMI2005 - Niels Tuning 1/22 Search for New Physics with the LHCb Detector Niels Tuning NIKHEF/"

Similar presentations


Ads by Google